Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:40:30.116Z Has data issue: false hasContentIssue false

Drift wave excitation in a collisional dusty magnetoplasma with multi-ion species

Published online by Cambridge University Press:  01 April 2009

P. K. SHUKLA
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
M. ROSENBERG
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the drift dissipative instability in a non-uniform magnetized plasma composed of electrons, positive ions, negative ions and negatively charged dust particles. We use a multi-fluid plasma model and derive a dispersion relation for the electrostatic drift waves with frequencies much smaller than the ion gyrofrequencies and wavelengths longer than the ion gyroradii. The presence of the negatively charged, massive dust grains affects the drift wave frequency and the growth rate of the drift dissipative instability. The present results may be relevant to space and laboratory magnetoplasmas containing negative ions and charged dust grains.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic Press.Google Scholar
[2]Shukla, P. K., Yu, M. Y., Rahman, H. U. et al. 1981 Phy. Rev. A 23, 321.CrossRefGoogle Scholar
[3]Shukla, P. K. and Stenflo, L. 2002 Europhy. J. D 20, 103.Google Scholar
[4]Shukla, P. K., Yu, M. Y., Rahman, H. U. et al. 1984 Phy. Rep. 105, 229.CrossRefGoogle Scholar
[5]Weiland, J. 2000 Collective Modes in Inhomogeneous Plasmas. Bristol: Institute of Physics.Google Scholar
[6]Vranjes, J. and Poedt, S. 2008 Phys. Plasmas 15, 034504.CrossRefGoogle Scholar
[7]Hasegawa, A. and Wakatani, M. 1983 Phys. Rev. Lett. 50, 682.CrossRefGoogle Scholar
[8]Wakatani, M. and Hasegawa, A. 1984 Phys. Fluids 27, 611.CrossRefGoogle Scholar
[9]Holland, C. et al. 2006 Phys. Rev. Lett. 96, 195002.CrossRefGoogle Scholar
[10]Yan, Z., Yu, J. H., Holland, C., Xu, M., Müller, S. H. and Tynan, G. R. 2008 Phys. Plasmas 15, 092309.CrossRefGoogle Scholar
[11]Tsytovich, V. N. and Winter, J. 1998 Phys. Usp. 41, 815.CrossRefGoogle Scholar
[12]Shukla, P. K., Yu, M. Y. and Bharuthram, R. 1991 J. Geophys. Res. 96, 21343.CrossRefGoogle Scholar
[13]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
[14]Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 17.CrossRefGoogle Scholar
[15]Benkadda, S., Tsytovich, V. N. and Verga, A. 1995 Comm. Plasma Phys. Control. Fusion 16, 321.Google Scholar
[16]Benkadda, S. and Tsytovich, V. N. 2002 Plasma Phys. Rep. 28, 395.CrossRefGoogle Scholar
[17]Benkadda, S., Gabbai, P., Tsytovich, V. N. and Verga, A. 1996 Phy. Rev. E 53, 2717.Google Scholar
[18]Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
[19]Bharuthram, R., Saleem, H. and Shukla, P. K. 1992 Phys. Scr. 45, 512.CrossRefGoogle Scholar
[20]Shukla, P. K. and Varma, R. K. 1993 Phys. Fluids B 5, 236.CrossRefGoogle Scholar
[21]Siva Rama Prasad, P. V. 1997 Phy. Lett. A 235, 610.CrossRefGoogle Scholar