Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T05:15:12.367Z Has data issue: false hasContentIssue false

Do nonlinear waves evolve in a universal manner in dusty and other plasma environments?

Published online by Cambridge University Press:  14 July 2014

R. Bharuthram
Affiliation:
University of the Western Cape, Bellville, South Africa
S. V. Singh*
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India
S. K. Maharaj
Affiliation:
South African National Space Agency (SANSA), Space Science Directorate, Hermanus, South Africa
S. Moolla
Affiliation:
University of KwaZulu-Natal, Durban, South Africa
I. J. Lazarus
Affiliation:
Durban University of Technology, Durban, South Africa
R. V. Reddy
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India
G. S. Lakhina
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India
*
Email address for correspondence: [email protected]

Abstract

Using a fluid theory approach, this article provides a comparative study on the evolution of nonlinear waves in dusty plasmas, as well as other plasma environments, viz electron-ion, and electron-positron plasmas. Where applicable, relevance to satellite measurements is pointed out. A range of nonlinear waves from low frequency (ion acoustic and ion cyclotron waves), high frequency (electron acoustic and electron cyclotron waves) in electron-ion plasmas, ultra-low frequency (dust acoustic and dust cyclotron waves) in dusty plasmas and in electron-positron plasmas are discussed. Depending upon the plasma parameters, saw-tooth and bipolar structures are shown to evolve.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bharuthram, R., Reddy, R. V., Lakhina, G. S. and Singh, N. 2002 Low-frequency nonlinear waves in the auroral plasma. Phys. Scr. T98, 137140.Google Scholar
Ergun, R. E., Carlson, C.W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R., Strangeway, R., et al. 1998 Fast satellite observations of electric field structures in the auroral zone. Geophys. Res. Lett. 25, 20252028.CrossRefGoogle Scholar
Kojima, H., Matsumoto, H., Miyatake, T., Nagano, I., Fujita, A., Frank, L. A., Mukai, T., Paterson, W.R., Saito, Y., Machida, S., et al. 1994 Relation between electrostatic solitary waves and hot plasma flow in the plasma sheet boundary layer: Geotail observations. Geophys. Res. Lett. 21, 29192922.Google Scholar
Lazarus, I. J., Bharuthram, R., Singh, S. V., Moolla, S. and Lakhina, G. S. 2014 Nonlinear electrostatic solitary waves in electron-positron plasmas. in preparation.Google Scholar
Lee, L. C. and Kan, J. R. 1981 Nonlinear ion-acoustic waves and solitons in a magnetized plasma. Phys. Fluids 24, 430433.CrossRefGoogle Scholar
Maharaj, S. K., Bharuthram, R., Singh, S. V. and Lakhina, G. S. 2008 Electrostatic solitary waves in a magnetized dusty plasma. Phys. Plasmas 15, 113701.Google Scholar
Moolla, S., Bharuthram, R., Singh, S. V. and Lakhina, G. S. 2007 An explanation for high frequency broadband electrostatic noise in the earth's magnetosphere. J. Geophys. Res. 112, A07214 (1–23).Google Scholar
Moolla, S., Bharuthram, R., Singh, S. V., Lakhina, G. S. and Reddy, R. V. 2003 Nonlinear high frequency waves in the magnetosphere. Pramana - J. Phys. 61, 12091214.CrossRefGoogle Scholar
Mozer, F. S., Ergun, R., Temerin, M., Cattell, C., Dombeck, J. and Wygant, J. 1997 New features of time domain electric-field structures in the auroral acceleration region. Phys. Rev. Lett. 79, 12811284.Google Scholar
Reddy, R. V., Lakhina, G. S., Singh, N. and Bharuthram, R. 2002 Spiky parallel electrostatic ion cyclotron and ion acoustic waves. Nonlinear Proc. Geophys. 9, 2529.Google Scholar
Reddy, R. V., Singh, S. V., Lakhina, G. S. and Bharuthram, R. 2006 Parallel electric field structures associated with the low-frequency oscillations in the auroral plasma. Earth Planets Space 58, 12271232.Google Scholar
Verheest, F. 2009 Oblique propagation of solitary electrostatic waves in multispecies plasmas. J. Phys. A: Math. Theor. 42 (28), 285501.CrossRefGoogle Scholar