Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Atzeni, S
1987.
The physical basis for numerical fluid simulations in laser fusion.
Plasma Physics and Controlled Fusion,
Vol. 29,
Issue. 11,
p.
1535.
Bud’ko, A. B.
Felber, F. S.
Kleev, A. I.
Liberman, M. A.
and
Velikovich, A. L.
1989.
Stability analysis of dynamic Z pinches and theta pinches.
Physics of Fluids B: Plasma Physics,
Vol. 1,
Issue. 3,
p.
598.
Scholz, M.
Stepniewski, W.
and
Zelazinska, B.
2000.
Burn wave simulation in Z-pinch channel.
Czechoslovak Journal of Physics,
Vol. 50,
Issue. S3,
Basko, M. M.
2000.
Magnetized implosions driven by intense ion beams.
Physics of Plasmas,
Vol. 7,
Issue. 11,
p.
4579.
Cereceda, Carlo
Deutsch, Claude
Peretti, Michel De
Sabatier, Michel
and
Nersisyan, Hrachya B.
2000.
Dielectric response function and stopping power of dense magnetized plasma.
Physics of Plasmas,
Vol. 7,
Issue. 7,
p.
2884.
Basko, M.M
Kemp, A.J
and
Meyer-ter-Vehn, J
2000.
Ignition conditions for magnetized target fusion in cylindrical geometry.
Nuclear Fusion,
Vol. 40,
Issue. 1,
p.
59.
Cereceda, Carlo
Deutsch, Claude
De Peretti, Michel
Sabatier, Michel
Basko, Mikhail M.
Kemp, Andreas
and
Meyer-ter-Vehn, Jurgend
2000.
Kinetic theory of alpha particles production in a dense and strongly magnetized plasma.
Physics of Plasmas,
Vol. 7,
Issue. 11,
p.
4515.
Kemp, A.J.
Basko, M.
and
Meyer-ter-Vehn, J.
2001.
Magnetized cylindrical targets for heavy ion fusion.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
Vol. 464,
Issue. 1-3,
p.
192.
Kemp, A.J
Basko, M.M
and
Meyer-ter-Vehn, J
2001.
Ignition conditions for magnetically insulated tamped ICF targets in cylindrical geometry.
Nuclear Fusion,
Vol. 41,
Issue. 2,
p.
235.
Gotchev, O. V.
Jang, N. W.
Knauer, J. P.
Barbero, M. D.
Betti, R.
Li, C. K.
and
Petrasso, R. D.
2008.
Magneto-inertial Approach to Direct-drive Laser Fusion.
Journal of Fusion Energy,
Vol. 27,
Issue. 1-2,
p.
25.
Gotchev, O. V.
Knauer, J. P.
Chang, P. Y.
Jang, N. W.
Shoup, M. J.
Meyerhofer, D. D.
and
Betti, R.
2009.
Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.
Review of Scientific Instruments,
Vol. 80,
Issue. 4,
Knauer, J. P.
Gotchev, O. V.
Chang, P. Y.
Meyerhofer, D. D.
Polomarov, O.
Betti, R.
Frenje, J. A.
Li, C. K.
Manuel, M. J.-E.
Petrasso, R. D.
Rygg, J. R.
and
Séguin, F. H.
2010.
Compressing magnetic fields with high-energy lasers.
Physics of Plasmas,
Vol. 17,
Issue. 5,
Velikovich, A. L.
Giuliani, J. L.
Clark, R. W.
and
Zalesak, S. T.
2012.
Thermonuclear burn wave propagation across an ultrahigh magnetic field.
p.
4C-5.
Velikovich, A. L.
Giuliani, J. L.
and
Zalesak, S. T.
2015.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma.
Physics of Plasmas,
Vol. 22,
Issue. 4,
Zhao, Xiaoming
Sun, Chengwei
Sun, Qizhi
and
Jia, Yuesong
2019.
Simulation on the compressed field-reversed configuration with alpha particle self-heating.
Plasma Physics and Controlled Fusion,
Vol. 61,
Issue. 7,
p.
075015.
Appelbe, B.
Velikovich, A. L.
Sherlock, M.
Walsh, C.
Crilly, A.
O' Neill, S.
and
Chittenden, J.
2021.
Magnetic field transport in propagating thermonuclear burn.
Physics of Plasmas,
Vol. 28,
Issue. 3,
Wu, Xiang-Feng
Wang, Feng
Lin, Zhan-Hong
Chen, Luo-Yu
Yu, Zhao-Ke
Wu, Kai-Bang
and
Wang, Zheng-Xiong
2023.
Numerical simulation of <inline-formula><tex-math id="Z-20231101091527">\begin{document}$\boldsymbol \alpha$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230700_Z-20231101091527.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230700_Z-20231101091527.png"/></alternatives></inline-formula> particle slowing-down process under CFETR scenario.
Acta Physica Sinica,
Vol. 72,
Issue. 21,
p.
215209.