Published online by Cambridge University Press: 04 June 2010
We derive a generalized linear dispersion relation of waves in a strongly magnetized, compressible, homogeneous and isotropic quasi-neutral plasma. Starting from a two-fluid model, describing distinguishable electron and ion fluids, we obtain a six-order linear dispersion relation of magnetized waves that contains effects due to electron and ion inertia, finite plasma beta and angular dependence of phase speed. We investigate propagation characteristics of these magnetized waves in a regime where scale lengths are comparable with electron and ion inertial length scales. This regime corresponds essentially to the solar wind plasma, where length scales, comparable with ion cyclotron frequency, lead to dispersive effects. These scales in conjunction with linear waves present a great deal of challenges in understanding the high-frequency, small-scale dynamics of turbulent fluctuations in the solar wind plasma.