Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:47:50.216Z Has data issue: false hasContentIssue false

Dispersion relation of transverse oscillation in relativistic plasmas with non-extensive distribution

Published online by Cambridge University Press:  15 February 2011

SAN-QIU LIU
Affiliation:
Department of Physics, Nanchang University, Nanchang 330031, P.R. China ([email protected])
XIAO-CHANG CHEN
Affiliation:
Department of Physics, Nanchang University, Nanchang 330031, P.R. China ([email protected])

Abstract

The generalized dispersion equation for superluminal transverse oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma with non-extensive q-distribution is derived. The analytical dispersion relation is obtained in an ultra-relativistic regime, which is related to q-parameter and temperature. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. Using the numerical method, we obtain the full dispersion curve that cannot be given by an analytic method. It is shown that the numerical solution is in good agreement with the analytical result in the long-wavelength and short-wavelength region for ultra-relativistic plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gell-Mann, M. and Tsallis, C. 2004 Nonextensive Entropy – Interdisciplinary Applications. New York: Oxford University Press.CrossRefGoogle Scholar
[2]Tsallis, C. 1988 Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479487.CrossRefGoogle Scholar
[3]Plastino, A. R. and Plastino, A. 1993 Tsallis entropy, Ehrenfest theorem and information theory. Phys. Lett. A 177, 177179.CrossRefGoogle Scholar
[4]Boghosian, B. M. 1996 Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. Phys. Rev. E 53, 47544763.Google ScholarPubMed
[5]Lavagno, A., Kaniadakis, G., Rego-Monteiro, M., Quarati, P. and Tsallis, C. 1998 Nonextensive thermo-statistical approach of the peculiar velocity function of galaxy clusters. Astrophys. Lett. 35, 449451.Google Scholar
[6]Liu, J. M., De Groop, J. S., Matte, J., Johnston, T. W. and Drake, R. P. 1994 Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions. Phys. Rev. Lett. 72, 27172720.CrossRefGoogle ScholarPubMed
[7]Lima, J. A. S., Silva, R. Jr. and Santos, J. 2000 Plasma oscillations and nonextensive statistics. Phys. Rev. E 61, 32603263.Google Scholar
[8]Liyan, L. and Jiulin, D. 2008 Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics. Physica A 387, 48214827.CrossRefGoogle Scholar
[9]Curtis, M. F. 1991 The Theory of Neutron Stars Magnetospheres. Chicago, IL: University of Chicago Press.Google Scholar
[10]Cheng, A. F. and Ruderman, M. A. 1980 Particle acceleration and radio emission above pulsar polar caps. Astrophys. J. 235, 576586.CrossRefGoogle Scholar
[11]Hirotani, K., Iguchi, S., Kimura, M. and Wajima, K. 2000 Pair plasma dominance in the parsec-scale relativistic jet of 3C 345. Astrophys. J. 545, 100106.CrossRefGoogle Scholar
[12]Wardle, J. F. C., Homan, D., Ojha, R. and Roberts, D. H. 1998 Electron–Positron jets associated with the quasar 3C 279. Nature 395, 457461.CrossRefGoogle Scholar
[13]Mourou, G. and Umstadter., D. 1992 Development and applications of compact high-intensity lasers. Phys. Fluids B 4, 23152325.CrossRefGoogle Scholar
[14]Munoz, V. 2006 A nonextensive statistics approach for Langmuir waves in relativistic plasmas. Nonlinear Processes Geophys. 13, 237241.CrossRefGoogle Scholar
[15]Podesta, J. J. 2008 Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons. Phys. Plasmas 15, 122902.CrossRefGoogle Scholar
[16]Shcherbakov, R. V. 2009 Dispersion of waves in relativistic plasmas with isotropic particle distributions. Phys. Plasmas 16, 032104.CrossRefGoogle Scholar
[17]Zhou, Q.-H., Jiang, B., Shi, X.-H. and Li, J.-Q. 2009 Whistler-mode waves growth by a generalized relativistic kappa-type distribution. Chin. Phys. Lett. 26, 025201.Google Scholar
[18]Lavagno, A. 2002 Relativistic nonextensive Thermodynamics. Phys. Lett. A 301, 1318.CrossRefGoogle Scholar
[19]Livadiotis, G. and McComas, D. J. 2009 Beyond kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105.CrossRefGoogle Scholar
[20]Leubner, M. P. 2002 A nonextensive entropy approach to kappa distribution. Astrophys. Space Sci. 282, 573579.CrossRefGoogle Scholar
[21]Leubner, M. P. 2004 Core-Halo distribution function: a natural equilibrium state in generalized thermostatistics. Astrophys. J. 11, 469478.CrossRefGoogle Scholar
[22]Milovanov, A. V. and Zelenyi, L. M. 2000 Functional background of the Tsallis entropy: “Coarse-grained" systems and “kappa" distribution functions. Nonlinear Processes Geophys. 7, 211221.CrossRefGoogle Scholar
[23]Nieves-Chinchilla, T. and Vinas, A. F. 2008 Kappa-like distribution functions inside magnetic clouds. Geofis. Int. 47, 245249.Google Scholar
[24]Shizgal, B. D. 2007 Suprathermal particle distributions in space physics: kappa distributions and entropy. Astrophys. Space Sci. 312, 227237.CrossRefGoogle Scholar
[25]Li, X. Q. 2004 Collapsing Dynamics of Plasmons. Beijing: Chinese Science and Technology Press.Google Scholar
[26]Lifshitz, E. M. and Pitaevskii, L. P. 1981 Physical Kinetics. Oxford: Pergamon.Google Scholar
[27]Schlickeiser, R. 1994 Longitudinal oscillations in hot isotropic Maxwellian plasmas. Phys. Plasmas 1, 21192124.CrossRefGoogle Scholar
[28]Mikhailovskii, A. B. 1980 Oscillations of an isotropic relativistic plasma. Plasma Phys. 22, 133149.CrossRefGoogle Scholar