Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T15:26:29.391Z Has data issue: false hasContentIssue false

Dispersion relation of degenerated electron–positron plasma in an ultra-relativistic regime

Published online by Cambridge University Press:  01 December 2008

S. Q. LIU
Affiliation:
Department of Physics, NanChang University, JiangXi, NanChang 330031, People's Republic of China ([email protected])
Y. L. LIAO
Affiliation:
Department of Physics, NanChang University, JiangXi, NanChang 330031, People's Republic of China ([email protected])
X. L. LIU
Affiliation:
Department of Physics, NanChang University, JiangXi, NanChang 330031, People's Republic of China ([email protected])
Q. S. XIAO
Affiliation:
Department of Physics, NanChang University, JiangXi, NanChang 330031, People's Republic of China ([email protected])
W. D. ZHANG
Affiliation:
Department of Physics, NanChang University, JiangXi, NanChang 330031, People's Republic of China ([email protected])

Abstract

The dispersion relation for superluminal waves in degenerated and isotropic electron–positron plasmas is investigated. The dispersion equation of linear waves is derived from the relativistically correct form of the dielectric function and the Fermi distribution function. Analytical dispersion laws for the real part of the wave frequency are derived by applying the long-wavelength approximation and the short-wavelength approximation. Using the numerical simulation method, we obtain the full dispersion curve which cannot be given by an analytic method.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. New York: Springer, pp. 7579.CrossRefGoogle Scholar
Bergman, J. and Eliasson, B. 2001 Phys. Plasmas 8, 1482.CrossRefGoogle Scholar
Carrington, M. E., Fugleberg, T., Pickering, D. and Thoma, M. H. 2004 Can. J. Phys. 88, 671.CrossRefGoogle Scholar
Chen, Y. Q., Liu, S. Q. and Jiang, W. Q. 2006 High Power Laser Particle Beams 18, 213.Google Scholar
Gedalin, M., Melrose, D. B. and Gruman, E. 1998 Phys. Rev. E 57, 3399.Google Scholar
Hirotani, K. and Iguchi, S. 2000 Astrophys. J. 545, 100.CrossRefGoogle Scholar
Iwamoto, S. and Takahapa, F. 2002 Astrophys. J. 565, 163.CrossRefGoogle Scholar
Laing, E. W. and Diver, D. A. 2005 Phys. Rev. E 72, 036409.Google Scholar
Laing, E. W. and Diver, D. A. 2006 Phys. Plasmas 13, 092115.CrossRefGoogle Scholar
Li, X. Q. 2004 Collapsing Dynamics of Plasmons. Beijing: Chinese Science and Technology Press, pp. 4345.Google Scholar
Mikhailovskii, A. B. 1979 Plasma Phys. 22, 133.CrossRefGoogle Scholar
Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.CrossRefGoogle Scholar
Pathria, R. K. 2003 Statistical Mechanics. Amsterdam: Elsevier, pp. 219223.Google Scholar
Schlickeiser, R. and Mause, H. 1995 Phys. Plasmas 2, 4025.CrossRefGoogle Scholar
Tajima, T. and Taniuti, T. 1990 Phys. Rev. A 42, 3587.CrossRefGoogle Scholar
Tjulin, A., Eriksson, A. I. and Andre, M. 2000 J. Plasma Physics 64, 287.CrossRefGoogle Scholar
Tsintsadze, L. N. and Shukla, P. K. 1992 Phys. Rev. A 46, 5288.CrossRefGoogle Scholar