Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T22:27:46.701Z Has data issue: false hasContentIssue false

The dispersion relation and the dielectric tensor of inhomogeneous magnetized plasmas

Published online by Cambridge University Press:  13 March 2009

R. A. Caldela Fo.
Affiliation:
Instituto de Física, UFRGS, Caixa Postal 15051, 91500 Porto Alegre, RS, Brasil
R. S. Schneider
Affiliation:
Instituto de Física, UFRGS, Caixa Postal 15051, 91500 Porto Alegre, RS, Brasil
L. F. Ziebell
Affiliation:
Instituto de Física, UFRGS, Caixa Postal 15051, 91500 Porto Alegre, RS, Brasil

Abstract

Electromagnetic-wave propagation in inhomogeneous magnetized plasmas is studied. Two different approaches to the subject are discussed and compared. Explicit expressions for the dielectric tensor components are derived following an established procedure that takes into account the effects of the gradients of plasma parameters, and are shown to possess non-resonant contributions to the anti-Hermitian parts. General and explicit expressions are also derived by following a different approach that has recently appeared in the literature, and are shown to possess satisfactory symmetry properties leading to anti-Hermitian parts comprising only resonant terms. The simple case of high-frequency waves in the ordinary mode propagating perpendicularly to the ambient magnetic field is presented as an example in order to show that the use of the dielectric tensor derived using the second method correctly describes wave absorption and/or amplification, eliminating the feature of non-resonant absorption that arises from the use of the first method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berk, H. L. & Dominguez, R. R. 1977 J. Plasma Phys. 18, 31.Google Scholar
Beskin, V. S., Gurevich, A. V. & Istomin, Ya. I. 1987 Soviet Phys. JETP, 65, 715.Google Scholar
Brambilla, M. & Ottaviani, M. 1985 Plasma Phys. Contr. Fusion, 27, 919.CrossRefGoogle Scholar
Caldela, Fo. R. A., Schneider, R. S. & Ziebell, L. F. 1988 Third Latin-American Workshop in Plasma Physics, Santiago, Chile, Contributed Papers, p. 11. Facultad de Fisica, PUC de Chile.Google Scholar
Chiu, S. C. & Mau, T. K. 1983 Nucl. Fusion, 23, 1613.Google Scholar
Colestock, P. L. & Kashuba, R. J. 1983 Nucl. Fusion, 23, 763.CrossRefGoogle Scholar
Fidone, I., Granata, G., Ramponi, G. & Meyer, R. L. 1978 Phys. Fiuids, 21, 645.CrossRefGoogle Scholar
Freund, H. P., Dillenburg, D. & Wu, C. S. 1982 J. Plasma Phys. 27, 69.Google Scholar
Friedland, L. & Bernstein, I. B. 1980 Phys. Rev. A 22, 1680.CrossRefGoogle Scholar
Fukuyama, A., Nishiyama, S., Itoh, K. & Itoh, S.-I. 1983 Nucl. Fusion, 23, 1005.Google Scholar
Gambier, D. J. & Samain, A. 1985 Nucl. Fusion, 25, 283.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Martin, Th. & Vaclavík, J. 1987 Helv. Phys. Acta, 60, 471.Google Scholar
Mikhailovskii, A. B. 1967 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 3, p. 159. Consultants Bureau, New York.Google Scholar
Mikhailovskii, A. B. 1983 Handbook of Plasma Physics (ed. Rosenbluth, M. N. and Sagdeev, R. Z.), p. 587. North-Holland.Google Scholar
Mikhailovskii, A. B. & Onishchenko, O. G. 1987 J. Plasma Phys. 37, 15.Google Scholar
Swanson, D. G. 1981 Phys. Fluids, 24, 2035.Google Scholar