Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:57:50.840Z Has data issue: false hasContentIssue false

Dispersion curves for the generalized Bernstein modes

Published online by Cambridge University Press:  13 March 2009

S. Puri
Affiliation:
Max-Planck-Institut für Plasmaphysik, 8046 Garching, West Germany
F. Leuterer
Affiliation:
Max-Planck-Institut für Plasmaphysik, 8046 Garching, West Germany
M. Tutter
Affiliation:
Max-Planck-Institut für Plasmaphysik, 8046 Garching, West Germany

Abstract

Dispersion curves are plotted for the extraordinary branch of the electron- and ion-cyclotron harmonic waves propagating perpendicularly to the static magnetic field in a non-relativistic, hot Maxwellian plasma, without invoking the electrostatic approximation. It is found that, except in the vicinity of the cyclotron harmonics and the hybrid resonances, either the cold-plasma or the electrostatic approximation are accurate representations of the exact solution. The hybrid resonances of the cold-plasma model become monotonically shrinking regions of low group velocity as the temperature is increased, till all discernible evidence of these resonances disappears as the parameters corresponding to the thermonuclear plasmas are approached.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramovitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. National Bureau of Standards.Google Scholar
Bernstein, I. B. 1958 Phys Rev. 109, 10.CrossRefGoogle Scholar
Budden, K. G. 1955 Proc. Roy. Soc. A 227, 510.Google Scholar
Canobbio, E. & Croci, R. 1966 Phys. Fluids, 9, 549.Google Scholar
Cato, J. E., Kristiansen, M. & Hagler, M. O. 1971 Wave Propagation and Damping in a Hot, Bounded Plasma. Texas Tech. Univ. Rep. ORO-3778–6.Google Scholar
Crawford, F. W. 1965 Nucl. Fusion, 5, 73.Google Scholar
Dnestroveskij, Yu. N. & Kostomarov, D. P. 1961 Soviet Phys. JETP, 13, 968.Google Scholar
Dnestroveskij, Yu. N. & Kostomarov, D. P. 1962 Soviet Phys. JETP, 14, 1089.Google Scholar
Dougherty, J. P. & Monaghan, S. S. 1966 Proc. Roy. Soc. A 289, 214.Google Scholar
Fredricks, R. W. 1968 J. Plasma Phys. 2, 365.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Gordeyev, G. V. 1952 JETP, 6, 660.Google Scholar
Gross, E. P. 1951 Phys. Rev. 82, 232.Google Scholar
Nambu, M. 1972 J. Plasma Phys. 7, 503.Google Scholar
Omura, M. 1967 Electrostatic Waves in Bounded Hot Plasmas. Stanford University IPR Rep. 156.Google Scholar
Pfirsch, D. & Tutter, M. 1963 Anregung und Nachweis von Plasmawellen durch Feldwellen. Max-Planck-Institut für Physik und Astrophysik Rep. MPI-PA- 15/63.Google Scholar
Sen, H. K. 1952 Phys. Rev. 88, 816.CrossRefGoogle Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tataronis, J. A.Cyclotron Harmonic Waves Propagation and Instabilities. Stanford University IPR Rep. 205.Google Scholar
Watson, G. N. 1922 Theory of Bessel Functions. Cambridge University Press.Google Scholar
Wharton, C. B., Korn, P. & Robertson, S. 1971 Phys. Rev. Lett. 27, 499.Google Scholar