Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:47:57.380Z Has data issue: false hasContentIssue false

Diamagnetic drift instabilities in collisional non-uniform quantum dusty magnetoplasmas

Published online by Cambridge University Press:  17 April 2012

M. JAMIL
Affiliation:
Department of Physics, GC University, Lahore-54000, Pakistan ([email protected])
CH. UZMA
Affiliation:
Department of Physics, GC University, Lahore-54000, Pakistan ([email protected])
K. ZUBIA
Affiliation:
Department of Physics, GC University, Lahore-54000, Pakistan ([email protected])
I. ZEBA
Affiliation:
Department of Physics, GC University, Lahore-54000, Pakistan ([email protected])
H. M. RAFIQUE
Affiliation:
Department of Physics, University of the Punjab, Lahore-54000, Pakistan
M. SALIMULLAH
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dust-acoustic and dust-lower-hybrid diamagnetic drift wave instabilities have been examined in a collisional non-uniform quantum dusty magnetoplasma. The dust-acoustic drift instability arises through the Fermi degenerate pressure of electrons for a high-density plasma, while for a relatively low-density collisional quantum plasma and short wavelength consideration, the instability is dominated by the Bohm potential effect exciting a new quantum dust-acoustic wave. In the long-range wavelength limit, dust-lower-hybrid waves are found to be unstable because of the diamagnetic drift of magnetized ions. Various possible instability conditions are found for diamagnetic drift instability.

Type
Letter
Copyright
Copyright © Cambridge University Press 2012

References

Ali, S. and Shukla, P. K. 2006 Potential distributions around a moving test charge in quantum plasmas. Phys. Plasmas 13, 102112.CrossRefGoogle Scholar
Andreev, A. V. 2000 Self-consistent equations for the interaction of an atom with an electromagnetic field of arbitrary intensity. JETP Lett. 72, 238.CrossRefGoogle Scholar
Asenjo, F. A., Muñoz, V., Vladivia, J. A. and Mahajan, S. M. 2011 A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107.CrossRefGoogle Scholar
Baines, M. F., Williams, I. P. and Asebiomo, A. S. 1965 Resistance to the motion of a small sphere moving through a gas. Mon. Not. R. Astron. Soc. 130, 63.CrossRefGoogle Scholar
Bingham, R., Mendonca, J. T. and Shukla, P. K. 2004 Plasma-based charged-particle accelerators. Plasma Phys. Control. Fusion 46, R1.CrossRefGoogle Scholar
Brodin, G. and Marklund, M. 2007 Spin solitons in magnetized pair plasmas. Phys. Plasmas 14, 112107.CrossRefGoogle Scholar
Brodin, G., Marklund, M. and Manfredi, G. 2008a Quantum plasma effects in classical regime. Phys. Rev. lett. 100, 175001.CrossRefGoogle ScholarPubMed
Brodin, G., Marklund, M., Zamanian, J., Ericsson, Å. and Mana, P. L. 2008b Effects of the g factor in semiclassical kinetic plasma theory. Phys. Rev. Lett. 101, 245002.CrossRefGoogle Scholar
Chabrier, G., Douchin, F. and Potekhin, A. Y. 2002 Dense astrophysical plasmas. J. Phys.: Condens. Matter 14, 9133.Google Scholar
Garcia, L. G., Haas, F., de Oliviera, L. P. L. and Goedert, J. 2005 Modified Zakharov equations for plasmas with a quantum correction. Phys. Plasmas 12, 012302.CrossRefGoogle Scholar
Gardner, C. 1994 The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54, 409.CrossRefGoogle Scholar
Gasser, I., Lin, C. K. and Markowich, P. 2000 A review of dispersive limits of (non)linear Schrodinger-type equations. Taiwanese J. Math. 4, 501.CrossRefGoogle Scholar
Hass, F. 2005 A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Quantum ion-acoustic waves. Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Haas, F., Manfredi, G. and Feix, M. R. 2000 A multistream model for quantum plasmas. Phys. Rev. E 62, 2763.CrossRefGoogle ScholarPubMed
Hussain, A., Zeba, I., Salimullah, M., Murtaza, G. and Jamil, M. 2010 Modified screening potential in a high-density inhomogeneous quantum dusty magnetoplasma. Phys. Plasmas 17, 054504.CrossRefGoogle Scholar
Jamil, M., Shah, H. A., Salimullah, M., Zubia, K., Zeba, I. and Uzma, Ch. 2010 The parametric decay of Alfven waves into shear Alfvén waves and dust lower hybrid waves. Phys. Plasmas 17, 073703.CrossRefGoogle Scholar
Jung, Y. D. 2001 Quantum-mechanical effects on electron—electron scattering in dense high-temperature plasmas. Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Kremp, D., Bornath, Th., Bonitz, M. and Schlanges, M. 1999 Quantum kinetic equation for the interaction of dense plasmas with laser fields. Phys. Rev. E 60, 4725.CrossRefGoogle ScholarPubMed
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Commun. 46, 263.Google Scholar
Manfredi, G. and Haas, F. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
Marklund, M. and Brodin, G. 2007 Dynamics of spin-1/2 quantum plasmas. Phys. Rev. Lett. 98, 025001.CrossRefGoogle ScholarPubMed
Marklund, M. and Shukla, P. K., 2006 Photonic crystal heterostructures and interfaces. Rev. Mod. Phys. 78, 455.Google Scholar
Na, S. C. and Jung, Y. D. 2008 Oscillatory screening and quantum interference effects on electron collisions in quantum plasmas. Phys. Lett. A 372, 5605CrossRefGoogle Scholar
Norreys, P. A., Beg, F. N., Sentoku, Y., Silva, L. O., Smith, R. A. and Trines, R. M. G. M. 2009 Intense laser-plasma interactions: new frontiers in high-energy density physics. Phys. Plasmas 16, 041002.CrossRefGoogle Scholar
Opher, M., Silva, L. O., Dauger, D. E., Decyk, V. K. and Dawson, J. M. 2001 Nuclear reaction rates and energy in stellar plasmas: the effect of highly damped modes. Phys. Plasmas 8, 2454.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Rastunkov, V. S. and Krainov, V. P. 2004 Relativistic electron drift in over dense plasma produced by a super intense femtosecond laser pulse. Phys. Rev. E 69, 037402.CrossRefGoogle Scholar
Ren, H., Wu, Z., Cao, J. and Chu, P. K. 2008 Electromagnetic drift waves in nonuniform quantum magnetized electron-positron-ion plasmas. J. Phys. A Math. Theory 41, 115501.CrossRefGoogle Scholar
Ren, H., Wu, Z., Cao, J. and Chu, P. K. 2009 Electrostatic drift modes in quantum dusty plasmas with Jeans terms. Phys. Plasmas 16, 103705.CrossRefGoogle Scholar
Rosenberg, M. and Shukla, P. K. 2004 Low-frequency drift instabilities in a strongly magnetized collisional dusty plasma. Plasmas Phys. Control. Fusion 46, 1807.CrossRefGoogle Scholar
Sabeen, T., Mirza, A. M. and Masood, W. 2010 Electrostatic drift-wave instability in a nonuniform quantum magnetoplasma with parallel velocity shear flows. Phys. Plasmas 17, 102705.Google Scholar
Saleem, H., Ali, A. and Khan, S. A. 2008 Low-frequency electrostatic and electromagnetic modes in nonuniform cold quantum plasmas. Phys. Plasmas 15, 014503.CrossRefGoogle Scholar
Salimullah, M. 1996 Low-frequency dust-lower-hybrid modes in a dusty plasma. Phys. Lett. A 215, 296.CrossRefGoogle Scholar
Salimullah, M., Hassan, M. H. A. and Sen, A. 1992 Low-frequency electrostatic modes in a magnetized dusty plasma. Phys. Rev. A 45, 5929.CrossRefGoogle Scholar
Salimullah, M., Jamil, M., Shah, H. A. and Murtaza, G. 2009a Jeans instability in a quantum dusty magnetoplasma. Phys. Plasmas 16, 014502.CrossRefGoogle Scholar
Salimullah, M., Jamil, M., Zeba, I., Uzma, Ch. and Shah, H. A. 2009b Drift wave instability in a nonuniform quantum dusty magnetoplasma. Phys. Plasmas 16, 034503.CrossRefGoogle Scholar
Salimullah, M. and Sen, A. 1992 Low-frequency response of a dusty plasma. Phys. Lett. A 163, 82.CrossRefGoogle Scholar
Shukla, P. K. 1992 Low-frequency modes in dusty plasmas. Phys. Scripta 45, 504.CrossRefGoogle Scholar
Shukla, P. K. 2006 A new dust mode in quantum plasmas. Phys. Lett. A 352, 242.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2006 Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96, 245001.CrossRefGoogle ScholarPubMed
Shukla, P. K., Salimullah, M. and Sorasio, G. 2002 Some cross-field instabilities in magnetized dusty plasmas. Phys. Plasmas. 9, 5121.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion acoustic waves. Phys. Scripta 45, 508.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2006a Jeans instabilities in quantum dusty plasmas. Phys. Lett. A 355, 378.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2006b New drift modes in a nonuniform quantum magnetoplasma. Phys. Lett. A 357, 229.CrossRefGoogle Scholar