Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T04:23:09.771Z Has data issue: false hasContentIssue false

Derivation of the quasi-linear equation in a magnetic field

Published online by Cambridge University Press:  13 March 2009

H. L. Berk
Affiliation:
Lawrence Livermore Laboratory, University of California, Livermore, California 94550

Abstract

A formal derivation of the quasi-linear equation of a plasma in a magnetic field is presented. The theory accounts for spatial inhomogeneity in one direction and for bounce motion of particles confined in a mirror magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, D. E., Berk, H. L. & Pearlstein, L. D. 1976 Phys. Rev. Lett. 36, 1051.CrossRefGoogle Scholar
Berk, H. L. & BooK, D. E. 1969 Phys. Fluids, 12, 649.CrossRefGoogle Scholar
Berk, H. L. & Dominguez, R. R. 1977 J. Plasma Phys. 18, 31.CrossRefGoogle Scholar
Berk, H. L, & Stewart, J. J. 1977 Phys. Fluids, 20, 1080.CrossRefGoogle Scholar
Berk, H. L., Rognlien, T. D. & Stewart, J. J. 1977 Comments Plasma Phys. Cont. Fusion. 3, 95.Google Scholar
Cordey, J. G., Kuo-Petravic, L. G. & Petravic, M. 1968 Nuel. Fusion, 8, 153.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Theory. Academic.Google Scholar
Drummond, W. E & Prnes, D. 1962 Nucl. Fusion Suppl., part III, 1049.Google Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Horton, C. W., Callen, J. D. & Rosenbluth, M. N. 1971 Phys. Fluids, 14, 2019.CrossRefGoogle Scholar
Kaufman, A. N. 1972 Phys. Fluids, 15, 1063.CrossRefGoogle Scholar
Post, R. F. & Rosenbluth, M. H. 1966 Phys. Fluids, 9, 730.CrossRefGoogle Scholar
Walters, G. M. & Harris, E. G. 1968 Phys. Fluids, 11, 112.CrossRefGoogle Scholar