Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T13:10:22.210Z Has data issue: false hasContentIssue false

Cylindrical and spherical solitary waves in a dusty non-thermal plasma

Published online by Cambridge University Press:  17 May 2012

S. ISLAM
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
A.A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
A. MANNAN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])

Abstract

A theoretical investigation of the basic characteristics of cylindrical and spherical dust-ion-acoustic (DIA) solitary waves (SWs) is made in a dusty non-thermal plasma, whose constituents are non-thermal electrons, inertial ions, and arbitrarily charged stationary dust. The reductive perturbation method is used to derive the modified Gardner equation. The latter is numerically analyzed for both positively and negatively charged dust. The basic features of cylindrical and spherical DIA SWs, which are found to exist in such a dusty non-thermal plasma, are identified. The implications of our results to both space and laboratory plasma situations are also discussed briefly.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baluku, T. K. and Hellberg, M. A. 2008 Phys. Plasmas 15, 123705.CrossRefGoogle Scholar
Baluku, T. K.et al. 2010 Phys. Plasmas 17, 053702.CrossRefGoogle Scholar
Barkan, A.et al. 1996 Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 973.CrossRefGoogle Scholar
Boström, R. 1992 IEEE. Trans. Plasma Sci. 20, 756.CrossRefGoogle Scholar
Cairns, R. A.et al. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Dovner, P. O.et al. 1994 Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
El-Labany, S. K.et al. 2003 Phys. Plasmas 10, 11.Google Scholar
Fortov, V. E.et al. 2005 Phys. Rep. 421, 1.CrossRefGoogle Scholar
Ghosh, S. and Bharuthram, R. 2008 Astrophys. Space Sci. 314, 121.CrossRefGoogle Scholar
Havnes, O.et al. 1996 J. Geophys. Res. 101, 10839.CrossRefGoogle Scholar
Havnes, O.et al. 2001 Phys. Scripta T89, 133.CrossRefGoogle Scholar
Hellberg, M. A. and Mace, R. L. 2002 Phys. Plasmas 9, 1495.CrossRefGoogle Scholar
Ikezi, H. 1986 Phys. Fluids 29, 1764.CrossRefGoogle Scholar
Ishihara, O. 2007 J. Phys. D 40, R121.Google Scholar
Lee, N. C. 2009 Phys. Plasmas 16, 042316.CrossRefGoogle Scholar
Liang, X.et al. 2001 Phys. Plasmas 8, 1459.CrossRefGoogle Scholar
Lonngren, K. E. 1983 Plasma Phys. 25, 943.CrossRefGoogle Scholar
Losseva, T. V.et al. 2009 Phys. Plasmas 16, 093704.CrossRefGoogle Scholar
Luo, Q. Z.et al. 1999 Phys. Plasmas 7, 3457.Google Scholar
Mamun, A. A. 1997 Phys. Rev. E 55, 1852.Google Scholar
Mamun, A. A. and Mannan, A. 2011 JETP Lett. 94, 356.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002a Phys. Plasmas 9, 1468.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002b IEEE. Trans. Plasma Sci. 30, 720.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009a Phys. Rev. E 80, 037401.Google Scholar
Mamun, A. A. and Shukla, P. K. 2009b Europhys. Lett. 87, 25001.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009c New J. Phys. 11, 103022.CrossRefGoogle Scholar
Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009a Phys. Rev. E 80, 046406.Google Scholar
Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009b Phys. Plasmas 16, 114503.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57 (7), 32.CrossRefGoogle Scholar
Miura, R. M.et al. 1968 J. Math. Phys 9, 1204.CrossRefGoogle Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1353.CrossRefGoogle Scholar
Moslem, W. M.et al. 2005 Phys. Plasmas 12, 052318.CrossRefGoogle Scholar
Nakamura, Y. and Sharma, A. 2001 Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Nakamura, Y.et al. 1999 Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
Popel, S. I. and Yu, M. Y. 1995 Contrib. Plasma Phys. 35, 103.CrossRefGoogle Scholar
Popel, S. I.et al. 2001 Phys. Scripta T89, 84.CrossRefGoogle Scholar
Popel, S. I.et al. 2002 AIP Conf. Proc. 469, 386.CrossRefGoogle Scholar
Popel, S. I.et al. 2003 Phys. Rev. E 67, 056402.Google Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IOP Publishing.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 1999 Phys. Plasmas 6, 1038.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
Tribeche, M. and Berbri, A. 2008 J. Plasma Phys. 74, 245.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Plasmas. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
Verheest, F. 2010 Phys. Plasmas 17, 062302.CrossRefGoogle Scholar
Verheest, F. and Pillay, S. R. 2008 Phys. Plasmas 15, 013703.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Ju-Kui, Xue 2004 Europhys. Lett. 68, 645.Google Scholar