Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T00:50:04.333Z Has data issue: false hasContentIssue false

Cyclotron radiation from a relativistic electron beam in a static magnetic field

Published online by Cambridge University Press:  13 March 2009

Z. G. An
Affiliation:
Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, 20742, U.S.A.
Y. C. Lee
Affiliation:
Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, 20742, U.S.A.
T. T. Lee
Affiliation:
Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, 20742, U.S.A.
H. H. Chen
Affiliation:
Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland, 20742, U.S.A.

Abstract

Electromagnetic cyclotron instabilities of a relativistic electron beam propagating in an external magnetic field are studied by considering electron motion inside a self-consistent electromagnetic field. When the number of electrons in a subgroup is greater than two, or when the phases are random, the linear dispersion relation obtained agrees with that of Chu et al. for a gyrotron in a ring model. When the number of electrons in a subgroup is limited to two only, the linear dispersion relation is different in that it has an instability threshold. Completely nonlinear motion is also studied using the method of Poincaré's return map, or by considering the departure rate of nearby trajectories. Stochasticity is observed in the nonlinear oscillation of the wave-particle system when a critical energy is exceeded. Physical implications for gyrotron operation are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andronov, A. A., Flyagin, V. A., Gaponov, A. V., Goldenberg, A. L., Petelin, M. I., Usov, V. G. & Yulpatov, V. K. 1978 Infrared Physics, 18, 385.CrossRefGoogle Scholar
Arnold, V. I. & Avez, A. 1968 Ergodic Problems of Classical Mechanics. Benjamin.Google Scholar
Berry, M. V. 1978 Topics in Nonlinear Dynamics (ed. Jorna, S.), p. 16. American Institute of Physics.Google Scholar
Borenstein, M. & Lamb, W. E. 1972 Phys. Rev. A, 5, 1298.CrossRefGoogle Scholar
Chirikov, B. V. 1979 Phys. Rep. 52, 263.CrossRefGoogle Scholar
Chu, K. R., Read, M. E. & Ganguly, A. K. 1980 IEEE Trans. Microwave Theory Tech., MMT-28, 318.Google Scholar
Chu, K. R. 1978 Phys. Fluids, 21, 2354.CrossRefGoogle Scholar
Chu, K. R. & Hirshfield, J. L. 1978 Phys. Fluids, 21, 461.CrossRefGoogle Scholar
Drake, J. F. & Lee, T. T. 1981 Phys. Fluids 24, 1115.CrossRefGoogle Scholar
Gaponov, A. V. 1959 Izv. Vyssh. Uchebn. Zaved. Radiofizi. 2, 450, 836.Google Scholar
Hirshfield, J. L., Bernstein, I. B. & Wachtel, J. M. 1965 J. Quantum Electron. QE-1, 237.CrossRefGoogle Scholar
Huberman, B. A. & Crutchfield, J. P. 1979 Phys. Rev. Lett. 43, 1743.CrossRefGoogle Scholar
Karney, C. F. F. 1978 Phys. Fluids, 21, 1584.CrossRefGoogle Scholar
Karney, C. F. F. 1979 Phys. Fluids 22, 2188.CrossRefGoogle Scholar
Laslett, L. J. 1978 American Institute of Physics Conference Proceedings, vol. 46, p. 22. AIP.Google Scholar
Lebowitz, J. & Penrose, O. 1973 Phys. Today, 26, 23.CrossRefGoogle Scholar
Menyuk, C. R. & Lee, Y. C. 1980 Phys. Fluids, 23, 2225.CrossRefGoogle Scholar
Moser, J. 1973 Stable and Random Motions in Dynamical Systems. Princeton University Press.Google Scholar
Ott, E. & Manheimer, W. M. 1975 IEEE Trans. Plasma Sci. PS-3, 1.CrossRefGoogle Scholar
Pantell, R. H. 1959 Proc. IRE, 47, 1146.Google Scholar
Rechester, A. & Rosenbluth, M. N. 1978 Phys. Rev. Lett. 40, 38.CrossRefGoogle Scholar
Rice, S. A. 1978 Advances in Laser Chemistry (ed. Zewail, A.). Springer.Google Scholar
Rosenbluth, M. N. 1972 Phys. Rev. Lett. 29, 408.CrossRefGoogle Scholar
Schneider, J. 1959 Phys. Rev. Lett. 2, 504.CrossRefGoogle Scholar
Smith, G. R. & Kaufman, A. N. 1978 Phys. Fluids, 21, 2230.CrossRefGoogle Scholar
Smith, G. R., Byers, J. A. & LeDestro, L. L. 1980 Phys. Fluids, 23, 278.CrossRefGoogle Scholar
Smith, G. R. & Kaufman, A. N. 1976 Proceedings of the Nobel Symposium on Nonlinear Effects in Plasma, Sweden, p. 475.Google Scholar
Sprangle, P. & Manheimer, W. M. 1975 Phys. Fluids, 18, 224.CrossRefGoogle Scholar
Sprangle, P. & Smith, R. A. 1980 J. Appl. Physics, 51, 3001.CrossRefGoogle Scholar
Tabor, M. 1980 Adv. Chem. Phys. 46, 73.Google Scholar
Treve, Y. M. 1978 Topics in Nonlinear Dynamics (ed. Jorna, S.), p. 147. American Institute of Physics.Google Scholar
Twiss, R. Q. 1958 Australian J. Phys. 11, 564.CrossRefGoogle Scholar
Whiteman, K. J. 1977 Rep. Prog. Phys. 40, 1033.CrossRefGoogle Scholar