Article contents
Coupled Langmuir and nonlinear ion acoustic waves in the presence of non-thermal electrons
Published online by Cambridge University Press: 01 April 2009
Abstract
A new set of equations describing the coupling of high-frequency electrostatic waves with ion fluctuations is obtained taking into account a non-thermal electron distribution. It is shown that there exist stationary envelope solitons which have qualitatively different structures from the solutions reported earlier. In particular, the Langmuir field envelopes are found with similar width and strong field intensities in comparison to the isothermal case. It is also shown that the presence of the fast or non-thermal electrons significantly modifies the nature of Langmuir solitons in the transition from a single-hump solution to a double-hump solution as the Mach number increases to unity. The low-frequency electrostatic potential associated with the high-frequency Langmuir field has the usual single-dip symmetric structure whose amplitude increases with increasing Mach number. Furthermore, the dip at the center of the double-hump Langmuir soliton is found to become smaller as the proportion of non-thermal electrons increases.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2008
References
- 3
- Cited by