Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T15:27:46.567Z Has data issue: false hasContentIssue false

Coupled Langmuir and nonlinear ion acoustic waves in the presence of non-thermal electrons

Published online by Cambridge University Press:  01 April 2009

H. ALINEJAD
Affiliation:
Department of Basic Science, Babol University of Technology, Babol 47148, Iran School of Physics, The University of Sydney, NSW 2006, Sydney, Australia ([email protected])
P. A. ROBINSON
Affiliation:
School of Physics, The University of Sydney, NSW 2006, Sydney, Australia ([email protected])
O. SKJAERAASEN
Affiliation:
Institute for Energy Technology, PO Box 40, N-2027 Kjeller, Norway
I. H. CAIRNS
Affiliation:
School of Physics, The University of Sydney, NSW 2006, Sydney, Australia ([email protected])

Abstract

A new set of equations describing the coupling of high-frequency electrostatic waves with ion fluctuations is obtained taking into account a non-thermal electron distribution. It is shown that there exist stationary envelope solitons which have qualitatively different structures from the solutions reported earlier. In particular, the Langmuir field envelopes are found with similar width and strong field intensities in comparison to the isothermal case. It is also shown that the presence of the fast or non-thermal electrons significantly modifies the nature of Langmuir solitons in the transition from a single-hump solution to a double-hump solution as the Mach number increases to unity. The low-frequency electrostatic potential associated with the high-frequency Langmuir field has the usual single-dip symmetric structure whose amplitude increases with increasing Mach number. Furthermore, the dip at the center of the double-hump Langmuir soliton is found to become smaller as the proportion of non-thermal electrons increases.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Zakharov, V. E., Mastryukov, A. F. and Synakh, V. S. 1975 Sov. J. Plasma Phys. 1, 335.Google Scholar
[2]Boldyrev, S. A., Vladimirov, S. V. and Tsytovioh, V. N. 1992 Sov. J. Plasma Phys. 18, 627.Google Scholar
[3]Nishikawa, K., Hojo, H., Mima, K. and Ikezi, H. 1974 Phys. Rev. Lett. 33, 148.CrossRefGoogle Scholar
[4]Glanz, J., Goldman, M. V., Newman, D. L. and Mckinstrie, C. J. 1993 Phys. Fluids B 5, 1101.CrossRefGoogle Scholar
[5]Vladimirov, S. V. and Yu, M. Y. 1994 Phys. Rev. E 49, 2136.Google Scholar
[6]Rao, N. N. and Shukla, P. K. 2005 Phys. Plasmas 636, 636.Google Scholar
[7]Robinson, P. A. 1997 Rev. Mod. Phys. 69, 507.CrossRefGoogle Scholar
[8]Shukla, P. K., Eliasson, B. and Sandberg, I. 2003 Phys. Rev. Lett. 91, 075005.CrossRefGoogle Scholar
[9]Shivamoggi, B. K. 1988 Introduction to Nonlinear Fluid–Plasma Waves. Boston, MA: Kluwer, p. 105.CrossRefGoogle Scholar
[10]Karpman, V. I. 1971 J. Plasma Phys. 13, 477.CrossRefGoogle Scholar
[11]Varma, R. K. and Rao, N. N. 1980 Phys. Lett. A 79, 311.CrossRefGoogle Scholar
[12]Wong, A. Y. and Quon, B. H. 1975 Phys. Rev. Lett. 34, 1499.CrossRefGoogle Scholar
[13]Ikezi, H., Chang, R. H. and Stern, R. A. 1976 Phys. Rev. Lett. 36, 1047.CrossRefGoogle Scholar
[14]Schamel, H. and Shukla, P. K. 1975 Phys. Rev. Lett. 36, 968.CrossRefGoogle Scholar
[15]Schamel, H., Yu, M. Y. and Shukla, P. K. 1977 Phys. Fluids 20, 1286.CrossRefGoogle Scholar
[16]Hal, D. S., Chaloner, C. R., Brynat, D. A., Lepine, D. R. and Tritakis, V. P. 1991 J. Geophys. Res. 96, 7869.CrossRefGoogle Scholar
[17]Bostrom, R. 1992 IEE Trans. Plasma Sci. 20, 756.CrossRefGoogle Scholar
[18]Dovner, P. O., Eriksson, A. I., Boston, R. and Holback, B. 1994 Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
[19]Cairns, R. A., Mamun, A. A., Bingham, R., Dendy, R. O., Bostrom, R., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
[20]Mamun, A. A. 1997 Phys. Rev. E 55, 1852.Google Scholar
[21]Bandyopadhyay, A. and Das, K. P. 2000 Phys. Scr. 61, 92.CrossRefGoogle Scholar
[22]Mamun, A. A. 2000 Eur. Phys. J. D 11, 143.Google Scholar