Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:32:16.807Z Has data issue: false hasContentIssue false

Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. Theory

Published online by Cambridge University Press:  13 March 2009

Reinhard Schlickeiser
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn, Germany
Ulrich Achatz
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn, Germany

Abstract

We consider a quasi-linear theory for the acceleration rates and propagation parameters of charged test particles in weakly turbulent electromagnetic plasmas. The similarity between two recent approaches to modelling of therandom electromagnetic field is demonstrated. It is shown that both the concept of dynamical magnetic turbulence and the concept of superposition of individual plasma modes lead to particle Fokker—Planck coefficients in which the sharp delta functions describing the resonant interaction of the particles have to be replaced by Breit—Wigner-type resonance functions, which are controlled by the dynamical turbulence decay time and the wave-damping time respectively. The resulting resonance broadening will significantly change the evaluation of cosmic-ray transport parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achatz, U., Dröge, W., Schilickeiser, R. & Wibbwrenz, G. 1993 J. Geophys. Res. (in press).Google Scholar
Achatz, U., Steinacker, J. & Schlickeiser, R. 1991 Astron. Astrophys. 250, 266.Google Scholar
Achterberg, A. 1981 Astron. Astrophys. 98, 161.Google Scholar
Barnes, A. 1969 Astrophys. J.. 155, 311.CrossRefGoogle Scholar
Bieber, J. W. 1990 Proceedings of 21st International Cosmic Ray Conference Adelaide (ed. Protheroe, R. J.), vol. 5, p. 308. Physics Publications, University of Adelaide, Adelaide 5001, Australia.Google Scholar
Bieber, J. W. & Matthaeus, W. H. 1992 a Proceedings of 22nd International Cosmic Ray Conference, Dublin (ed. Cawley, M., Drury, L. O'C., Fegan, D. J., O'Sullivan, D., Porter, N. A., Quenby, J. J. & Watson, A. A.), vol.3, p. 248. Reprint Ltd., Dublin, Ireland: The Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, lreland.Google Scholar
Bieber, J. W. & Matthaeus, W. H. 1992 b Particle Acceleration in Cosmic Plasmas (ed. Zank, G. P. & Gaisser, T. K.), p. 86. AlP.Google Scholar
Davila, J. M. & Scott, J. S. 1984 Astrophys. J.. 285, 400.CrossRefGoogle Scholar
Foote, E. A. & Kulsrud, R. M. 1979 Astrophys. J.. 233, 302.CrossRefGoogle Scholar
Hall, D. E. & Sturrock, P. A. 1967 Phys. Fluids. 10, 2620.CrossRefGoogle Scholar
Hasselmann, K. & Wibberenz, G. 1968 Z. Geophys. 34, 353.Google Scholar
Jaekel, U. & Schlickeiser, R. 1992 J. Phys. G 18, 1089.CrossRefGoogle Scholar
Jokipii, J. R. 1966 Astrophys. J.. 146, 480.CrossRefGoogle Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids. 9, 2377.CrossRefGoogle Scholar
Kirk, J. G., Schlickeiser, R. & Schneider, P. 1988 Astrophys. J.. 328, 269.CrossRefGoogle Scholar
Krommes, J. A. 1984 Basic Plasma Physics II (ed. Galeev, A. A. & Sudan, R. N.), p. 183. North-Holland.Google Scholar
Lerche, I. 1968 Phys. Fluids. 11, 1720.CrossRefGoogle Scholar
Matthaeus, W. H. & Zhou, Y. 1989 Phys. Fluids. B 1, 1929.CrossRefGoogle Scholar
Schlickeiser, R. 1989 Astrophys. J.. 336, 243.CrossRefGoogle Scholar
Schlickeiser, R. 1992 Particle Acceleration in Cosmic Plasmas (ed. Zank, G. P. & Gaisser, T. K.), p. 92. AlP.Google Scholar
Steinacker, J. & Miller, J. A. 1992 Astrophys. J.. 393, 764.CrossRefGoogle Scholar