Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T14:45:57.671Z Has data issue: false hasContentIssue false

Confluence of three shock waves for transverse shocks and shocks in an aligned MHD field

Published online by Cambridge University Press:  13 March 2009

A. R. Bestman
Affiliation:
Department of Mechanical Engineering, University of Sydney

Extract

The paper studies the confluence of three shock waves meeting at a point, in an ideally conducting perfect gas, for transverse shocks and shocks in an aligned MHD field. The method used involves the hodograph mapping technique. A presentation of the shock polars in the total pressure P*, flow deflexion δ(δ, P*/P*0) plane is thus given. The algebraic complexity of the problem prohibits discussion of an alternative mathematical approach.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. E. 1963 Magnetogasdynamic Shock Waves. MIT.CrossRefGoogle Scholar
Bazer, J. & Ericson, W. 1959 Astrophys. J. 129, 758.CrossRefGoogle Scholar
Bazer, J. & Ericson, W. 1961 Proc. Symp. on Electromagnetics and Fluid Dynamics of Gaseous Plasma, p. 387. New York: Polytechnic Press.Google Scholar
Bestman, A. R. 1972 Dept. Mech. Eng., University of Sydney, Kolling Rep. F 36.Google Scholar
Cabannes, H. 1960 Rev. Modern Phys. 32, 973.CrossRefGoogle Scholar
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flows and Shock Waves. Interscience.Google Scholar
Eggink, H. 1943 Zentralstelle wiss. Ber.Google Scholar
Geffen, N. 1963 Phys. Fluids, 6, 556.CrossRefGoogle Scholar
Guderley, G. K. 1947 Headquarters Air Material Command, Wright field, Dayton, Ohio. Tech. Rep. F 2168-ND.Google Scholar
Guderley, G. K. 1962 Theory of Transonic Flow. Pergamon.Google Scholar
Henderson, L. F. 1964 Aeronautical Quart. 4, 181.CrossRefGoogle Scholar
Jeffrey, A. & Taniuft, T. 1964 Nonlinear Wave Propagation. Academic.Google Scholar
Kalikhman, L. E. 1967 Elements of Magnetogasdynamics. W. B. Saunders.Google Scholar
Kiselev, M. I. 1959 Soviet Phys. Doklady, 4, 517.Google Scholar
Kiselev, M. I. & Kolosnitsyn, N. I. 1960 Soviet Phys. Doklady, 5, 246.Google Scholar
Kogan, M. N. 1959 J. Appl. Math. Mech. 23, 784.CrossRefGoogle Scholar
Kogan, M. N. 1962 Acad. Sci. Latvia SSR.Google Scholar
Lüst, R. 1953 Z. Naturforsch. 10 A, 125.CrossRefGoogle Scholar
Lynn, Y. M. 1971 J. PlasmaPhys. 6, 283.Google Scholar
Morioka, S. 1961 J. Phys. Soc. Japan, 16, 2346.CrossRefGoogle Scholar
Pain, H. V. & Rogers, E. W. E. 1962 Rep. Frog. Phys. 25, 287.CrossRefGoogle Scholar
Seebass, H. 1961 Quart. Appl. Math. 19, 231.CrossRefGoogle Scholar
Tamada, K. 1962 Phys. Fluids, 5, 871.CrossRefGoogle Scholar
Taniuti, T. 1958 Prog. Theor. Phys. (Kyoto), 19, 69.CrossRefGoogle Scholar
Urashima, S. & Morioka, S. 1966 J. Phys. Soc. Japan, 21, 1431.CrossRefGoogle Scholar
Wecken, F. 1949 Z. angew. Math. Mech. 29.CrossRefGoogle Scholar
Wuest, W. 1948 Z. angew. Math. Mech. 28.CrossRefGoogle Scholar