Published online by Cambridge University Press: 13 March 2009
This paper gives an extensive analytical and numerical characterization of the growth-rate curves (imaginary frequency versus wavenumber) derived from the free electron laser dispersion relation for a warm relativistic electron beam propagating through a constant-amplitude helical magnetic wiggler field. The electron beam is treated as infinite in transverse extent. A detailed mathematical analysis is given of the exact dispersion relation and its Compton approximation for the case of a water-bag equilibrium distribution function (uniform distribution in axial momentum pz). Applicability of the water-bag results to the case of a Gaussian equilibrium distribution in pz is tested numerically. One result of the water-bag analysis is a set of validity conditions for the Compton approximation. Numerical and analytical results indicate that these conditions are applicable to the Gaussian case far outside the parameter range where the individual water-bag and corresponding Gaussian growth rate curves agree.