Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:26:54.486Z Has data issue: false hasContentIssue false

Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

Published online by Cambridge University Press:  13 July 2015

P. M. Bellan*
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
X. Zhai
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
K. B. Chai
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
B. N. Ha
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh–Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellan, P. M. 2006 Fundamentals of Plasma Physics. pp. 334338. Cambridge University Press.Google Scholar
Bellan, P. M. 2014 Circular polarization of obliquely propagating whistler wave magnetic field. Phys. Plasmas 20, 082113.Google Scholar
Bellan, P. M., Kumar, D., Stenson, E. V., Tripathi, S. K. P., Yun, G. S. & Moser, A. L. 2010 Laboratory simulations of astrophysical jets and solar coronal loops: new results. In Proceedings of International Symposium on Plasmas in the Laboratory and in the Universe: Interactions, Patterns and Turbulence, Como, Italy, 1–4 December 2009 (ed. Bertin, G., DeLuca, F., Lodato, G., Pozzoli, R. & Rome, M.), AIP Conference Proceedings, vol. 1242, pp. 156163. AIP.Google Scholar
Bennett, W. H. 1934 Magnetically self-focussing streams. Phys. Rev. 45, 890897.Google Scholar
Chai, K. B. & Bellan, P. M. 2013a Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection. Rev. Sci. Instrum. 84 (12), 123504.Google Scholar
Chai, K. B. & Bellan, P. M. 2013b Spontaneous formation of nonspherical water ice grains in a plasma environment. Geophys. Res. Lett. 40 (23), 62586263.Google Scholar
Chai, K. B. & Bellan, P. M. 2015 Formation and alignment of elongated, fractal-like water–ice grains in extremely cold, weakly ionized plasma. Astrophys. J. 802 (1), 112.Google Scholar
Grad, H. & Rubin, H. 1958 MHD equilibrium in an axisymmetric toroid. In Proc. 2nd UN Conf. on the Peaceful Uses of Atomic Energy, vol. 31, p. 190. IAEA.Google Scholar
Hansen, J. F. & Bellan, P. M. 2001 Experimental demonstration of how strapping fields can inhibit solar prominence eruptions. Astrophys. J. 563, L183L186; Part 2.Google Scholar
Hsu, S. C. & Bellan, P. M. 2003 Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Phys. Rev. Lett. 90, 215002.Google Scholar
Kliem, B. & Török, T. 2006 Torus instability. Phys. Rev. Lett. 96 (25), 255002.Google Scholar
Kumar, D. & Bellan, P. M. 2009 Nonequilibrium Alfvénic plasma jets associated with spheromak formation. Phys. Rev. Lett. 103 (10), 105003.Google Scholar
Moser, A. L. & Bellan, P. M. 2012 Magnetic reconnection from a multiscale instability cascade. Nature 482, 379381.Google Scholar
Shafranov, V. D. 1966 Plasma equilibrium in a magnetic field. In Reviews of Plasma Physics, vol. 2, p. 103. Consultants Bureau.Google Scholar
Shimizu, S., Klumov, B., Shimizu, T., Rothermel, H., Havnes, O., Thomas, H. M. & Morfill, G. E. 2010 Synthesis of water ice particles in a plasma chamber. J. Geophys. Res. Atmos. 115, D18205.Google Scholar
Stenson, E. V. & Bellan, P. M. 2008 Dual-species plasmas illustrate MHD flows. IEEE Trans. Plasma Sci. 36 (4), 12061207.Google Scholar
Stenson, E. V. & Bellan, P. M. 2012 Magnetically driven flows in arched plasma structures. Phys. Rev. Lett. 109 (7), 075001.Google Scholar
Zhai, X., Li, H., Bellan, P. M. & Li, S. T. 2014 Three-dimensional MHD simulation of the Caltech plasma jet experiment: first results. Astrophys. J. 791 (1), 40.Google Scholar