Article contents
Comparison between fluid electron-temperature-gradient driven simulations and Tore Supra experiments on electron heat transport
Published online by Cambridge University Press: 01 April 2007
Abstract.
In recent years, much attention has been devoted to the electron-temperature-gradient (ETG) driven instability as a possible explanation for the high electron thermal conductivity found in most tokamaks. The present contribution assesses whether a specific three-dimensional fluid ETG model can reproduce the conductivity observed in the Tore Supra tokamak [Equipe Tore Supra (presented by R. Aymar) 1989 Plasma Physics and Controlled Nuclear Fusion Research (Proc. 12th Int. Conf., Nice, 1988, Vol. 1.) Vienna: IAEA, p. 9]. Although the model reproduces fairly well the observed critical gradient, a large discrepancy factor, of the order of 50, is found for the ratio between the experimental and the simulated conductivity. On the basis of this study, one must conclude that the electron heat transport cannot be explained only with a fluid ETG turbulence model.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2006
References
- 1
- Cited by