Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:35:07.778Z Has data issue: false hasContentIssue false

Comparison between fluid electron-temperature-gradient driven simulations and Tore Supra experiments on electron heat transport

Published online by Cambridge University Press:  01 April 2007

B. LABIT
Affiliation:
École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération helvétique, CH-1015Lausanne
M. OTTAVIANI
Affiliation:
Association EURATOM-CEA sur la Fusion, CEA/DSM/DRFC, CEA Cadarache, 13108 Saint Paul lez Durance, France

Abstract.

In recent years, much attention has been devoted to the electron-temperature-gradient (ETG) driven instability as a possible explanation for the high electron thermal conductivity found in most tokamaks. The present contribution assesses whether a specific three-dimensional fluid ETG model can reproduce the conductivity observed in the Tore Supra tokamak [Equipe Tore Supra (presented by R. Aymar) 1989 Plasma Physics and Controlled Nuclear Fusion Research (Proc. 12th Int. Conf., Nice, 1988, Vol. 1.) Vienna: IAEA, p. 9]. Although the model reproduces fairly well the observed critical gradient, a large discrepancy factor, of the order of 50, is found for the ratio between the experimental and the simulated conductivity. On the basis of this study, one must conclude that the electron heat transport cannot be explained only with a fluid ETG turbulence model.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Horton, W., Choi, D.-I. and Tang, W. M. 1981 Phys. Fluids 24, 10771085.CrossRefGoogle Scholar
[2]Horton, W. et al. . 2000 Phys. Plasmas 7, 1494.CrossRefGoogle Scholar
[3]Ohkawa, T. 1978 Phys. Lett. A 67, 35.CrossRefGoogle Scholar
[4]ITER Physics Basis 1999 Nucl. Fusion 39, 12.Google Scholar
[5]Horton, W., Hong, B. G. and Tang, W. M. 1988 Phys. Fluids 31, 2971.Google Scholar
[6]Kim, J. Y. and Horton, W. 1991 Phys. Fluids B 3, 31943197.Google Scholar
[7]Horton, W., Hong, B. -G., Tajima, T. and Bekki, N. 1990 Comm. Plasma Phys. Control. Fusion 13, 207217.Google Scholar
[8]Jenko, F. et al. . 2000 Phys. Plasmas 7, 5, 1904.Google Scholar
[9]Dorland, W., Jenko, F., Kotschenreuther, M. and Rogers, B. N. 2000 Phys. Rev. Lett. 85, 5579.Google Scholar
[10]Jenko, F. and Dorland, W. 2001 Plasmas Phys. Control. Fusion 43, A-141.Google Scholar
[11]Idomura, Y., Tokuda, S. and Kishimoto, Y. 2005 Nucl. Fusion 45, 1571.Google Scholar
[12]Lin, Z., Chen, L. and Zonca, F. 2005 Phys. Plasmas 12, 056125.CrossRefGoogle Scholar
[13]Labit, B. 2003 Electron heat transport in tokamaks by direct numerical simulation of small scale turbulence. PhD thesis, Université de Provence (in French).Google Scholar
[14]Labit, B. and Ottaviani, M. 2003 Phys. Plasmas 10, 126.CrossRefGoogle Scholar
[15]Aymar, R. 1989 Plasma Physics and Controlled Nuclear Fusion Research (Proc. 12th Int. Conf., Nice, 1988, Vol. 1.) Vienna: IAEA, p. 9.Google Scholar
[16]Braginskii, S. I. 1965 Reviews of Plasmas Physics, Vol. I, (ed. Leontovitch, M.A.). New York: Consultants Bureau, p. 205.Google Scholar
[17]Hoang, G. T., Bourdelle, C., Garbet, X., Giruzzi, G., Aniel, T., Ottaviani, M., Horton, W., Zhu, P. and Budny, R. V. 2001 Phys. Rev. Lett. 87, 12.Google Scholar
[18]Ryter, F. et al. . 2001 Plasma Phys. Control. Fusion 43, A323A338.Google Scholar
[19]Zou, X. L. et al. . 1999 Investigation of dimensionless scaling laws and non local transport in Tore Supra. In: Proc. 17th IAEA Fusion Energy Conf., Yokohama, Japan. Vienna: IAEA, EXP/P2–13.Google Scholar