Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T06:16:49.476Z Has data issue: false hasContentIssue false

A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory

Published online by Cambridge University Press:  01 February 2009

M. LAZAR
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
A. SMOLYAKOV
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
R. SCHLICKEISER
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])

Abstract

A comparative study of the electromagnetic instabilities in anisotropic unmagnetized plasmas is undertaken. The instabilities considered are the filamentation and Weibel instability, and their cumulative effect. Dispersion relations are derived and the growth rates are plotted systematically for the representative cases of non-relativistic counterstreaming plasmas with isotropic or anisotropic velocity distributions functions of Maxwellian type. The pure filamentation mode is attenuated by including an isotropic Maxwellian distribution function. Moreover, it is observed that counterstreaming plasmas can be fully stabilized by including bi-Maxellian distributions with a negative thermal anisotropy. This effect is relevant for fusion plasma experiments. Otherwise, for plasma streams with a positive anisotropy the filamentation and Weibel instabilities cumulate leading to a growth rate by orders of magnitude larger than that of a simple filamentation mode. This is noticeable for the quasistatic magnetic field generated in astrophysical sources, and which is expected to saturate at higher values and explain the non-thermal emission observed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[2]Fried, B. D. 1959 Phys. Fluids 2, 337.CrossRefGoogle Scholar
[3]Kazimura, Y., Sakai, J. I., Neubert, T. and Bulanov, S. V. 1998 Astrophys. J. 498, L183.CrossRefGoogle Scholar
[4]Medvedev, M. and Loeb, A. 1999 Astrophys. J. 526, 697.CrossRefGoogle Scholar
Gruzinov, A. 2001 Astrophys. J. Lett. 563, L15.CrossRefGoogle Scholar
[5]Schlickeiser, R. and Shukla, P. K. 2003 Astrophys. J. 599, L57.CrossRefGoogle Scholar
Okabe, N. and Hattori, M. 2003 Astrophys. J. 599, 964.CrossRefGoogle Scholar
[6]Nishikawa, K.-I. et al. 2003 Astrophys. J. 595, 555.CrossRefGoogle Scholar
Hededal, C. B., Haugbolle, T., Frederiksen, F. J. T. and Nordlund, A. 2004 Astrophys. J. 617, L107.CrossRefGoogle Scholar
[7]Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2002 Phys. Plasmas 9, 2458.CrossRefGoogle Scholar
[8]Startsvev, E. A. and Davidson, R. C. 2003 Phys. Plasmas 10, 4829.CrossRefGoogle Scholar
[9]Bret, A., Firpo, M.-C. and Deutsch, C. 2004 Phys. Rev. E 70, 046401.Google Scholar
[10]Bret, A., Firpo, M.-C. and Deutsch, C. 2005 Phys. Rev. E 72, 016403.Google Scholar
[11]Bret, A. and Deutsch, C. 2006 Phys. Plasmas 13, 022110.CrossRefGoogle Scholar
[12]Kalman, G., Montes, C. and Quemada, D. 1968 Phys. Fluids 11, 1797.CrossRefGoogle Scholar
[13]Davidson, R. C., Hammer, D. A., Haber, I. and Wagner, C. E. 1972 Phys. Fluids 15, 317.CrossRefGoogle Scholar
[14]Yoon, P. H. 1989 Phys. Fluids B 1, 1336.CrossRefGoogle Scholar
[15]Schlickeiser, R. 2004 Phys. Plasmas 11, 5532.CrossRefGoogle Scholar
[16]Yoon, P. H. and Davidson, R. C. 1987 Phys. Rev. A 35, 2718.CrossRefGoogle Scholar
[17]Yang, T.-Y. B., Gallant, Y., Arons, J. and Langdan, A. B. 1993 Phys. Fluids B 5, 3369.CrossRefGoogle Scholar
[18]Zaheer, S. and Murtaza, G. 2007 Phys. Plasmas 14, 022108.CrossRefGoogle Scholar
[19]Lee, R. and Lampe, M. 1973 Phys. Rev. Lett. 31, 23.Google Scholar
[20]Thode, L. E., Jones, M. E., Mostrom, M. A. and Moir, D. C. 1980 Bull. Am. Phys. Soc. 25, 1037.Google Scholar
[21]Cary, J. R., Thode, L. E., Lemons, D. S., Jones, M. E. and Mostrom, M. A. 1981 Phys. Fluids 24, 1818.CrossRefGoogle Scholar
[22]Shukla, P. K., Yu, M. Y. and Lakhina, G. S. 1982 Phys. Fluids 25, 2344.CrossRefGoogle Scholar
[23]Lee, H. and Thode, L. E. 1983 Phys. Fluids 26, 2707.CrossRefGoogle Scholar
[24]Lazar, M., Schlickeiser, R. and Shukla, P. K. 2006 Phys. Plasmas 13, 102107.CrossRefGoogle Scholar
[25]Tautz, R. C. and Schlickeiser, R. 2005 Phys. Plasmas 12, 072101.CrossRefGoogle Scholar
[26]Tautz, R. C. and Schlickeiser, R. 2005 Phys. Plasmas 12, 122901.CrossRefGoogle Scholar
[27]Tautz, R. C. and Schlickeiser, R. 2006 Phys. Plasmas 13, 062901.CrossRefGoogle Scholar
[28]Tautz, R. C. and Sakai, J.-I. 2007 Phys. Plasmas 14, 012104.CrossRefGoogle Scholar
[29]Fried, B. D. and Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar