Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T13:16:22.387Z Has data issue: false hasContentIssue false

The collisionless flow of unmagnetized plasmas around bodies

Published online by Cambridge University Press:  13 March 2009

Bernd Könemann
Affiliation:
Lehrstuhl B für Theoretische Physik der TU Braunschweig, Mondelssohnstr. 1A, D3300 Braunschweig, Germany

Abstract

The ion density in the wake of extended bodies in collisionless flows of unmagnetized plasmas is qualitatively investigated. Both the deflexion of the ions in a surface potential field, and the collective response of the ambient plasma are incorporated in a model which reveals the connexion between the wakes of extended bodies and those of point charges. The differences between the wake features of small and large bodies in strongly non-isothermal plasmas (Te » Ti) are related to the excitation of different types of waves. In isothermal plasmas no sharp wake features can be expected, because the appropriate waves are heavily damped, and other features are smoothed by the thermal motion of the ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Al'pert, Ya. L. 1974 Waves and Satellites in the Near Earth Plasma. Consultants Bureau.CrossRefGoogle Scholar
Al'pert, Ya. L., Gurevich, A. V. & Pitayevsky, L. P. 1965 Space Physics with Artificial Satellites. Consultants Bureau.Google Scholar
Chen, L., Lanodon, A. B. & Lieberman, M. A. 1973 J. Plasma Phys. 9, 311.CrossRefGoogle Scholar
Denisse, J. F. & Delcroix, J. L. 1963 Plasma Waves. Wiley.Google Scholar
Fournier, G. & Pigache, D. 1975 Phys. Fluids, 18, 1443.CrossRefGoogle Scholar
Gurevich, A. V., Pitayevsky, L. P. & Smirnova, V. V. 1970 Soviet Phys. Uspekhi, 99, 3.Google Scholar
Hester, S. D. & Sonin, A. A. 1970 a Phys. Fluids, 13, 641.CrossRefGoogle Scholar
Hester, S. D. & Sonin, A. A. 1970 b A.I.A.A. J. 8, 1090.Google Scholar
Kasha, M. A. 1969 The Ionosphere and its Interaction with Satellites. Gordon & Breach.Google Scholar
Kiel, R. E., Gey, F. C. & Gustafson, W. A. 1968 A.I.A.A. J. 6, 690.Google Scholar
Könemann, B. 1977 Thesis TU Braunschweig.Google Scholar
Laing, E. W., Lamont, A. & Fielding, P. J. 1971 J. Plasma Phys. 5, 441.CrossRefGoogle Scholar
Liu, V. C. 1969 Space Sci. Rev. 9, 423.CrossRefGoogle Scholar
Martin, A. R. 1974 Planet Space Sci. 22, 121.CrossRefGoogle Scholar
Oya, H. 1970 Planet Space Sci. 18, 793.CrossRefGoogle Scholar
Pitayevsky, L. P. 1961 Geom. Aeron. 1, 194.Google Scholar
Sanmartin, J. R. & Lam, S. H. 1971 Phys. Fluids, 14, 62.CrossRefGoogle Scholar
Seehusen, J. 1972 Diploma thesis TU Braunschweig.Google Scholar
Stone, N. H., Samir, U. & Oran, W. A. 1974 J. Atmosph. Terr. Phys. 36, 253.CrossRefGoogle Scholar
Taylor, J. C. 1967 a Planet. Space Sci. 15, 155.CrossRefGoogle Scholar
Taylor, J. C. 1967 b Planet. Space Sci. 15, 463.CrossRefGoogle Scholar
Woodroffe, J. A. & Sonin, A. A. 1974 Phys. Fluids, 17, 79.CrossRefGoogle Scholar