Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:54:07.858Z Has data issue: false hasContentIssue false

Collisionless electrostatic interchange instabilities

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Earth and Space Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Michelle F. Thomsen
Affiliation:
Earth and Space Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

The linear Vlasov dispersion equation for electrostatic plasma instabilities driven by gravity and weak density gradients perpendicular to a uniform magnetic field is derived and solved numerically. Two interchange instabilities emerge: the well-known fluid mode at long wavelengths and a kinetic mode at wavelengths short compared with the ion gyroradius. The properties of both instabilities are studied, as well as the effects of gravity on the universal and lower-hybrid density drift instabilities. The results show that the kinetic interchange generally has a larger growth rate than the fluid interchange instability, indicating that, whenever the latter is present in a collisionless plasma, the former may also be found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernhardt, P. A., Pongratz, M. B., Gary, S. P. & Thomsen, M. F. 1982 J. Geophys Res. 87, 2356.CrossRefGoogle Scholar
Gary, S. P. 1980 Phys. Fluids, 23, 1193.CrossRefGoogle Scholar
Gary, S. P. & Eastman, T. E. 1979 J. Geophys. Res. 84, 7378.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1978 Phys. Fluids, 21, 1181.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1979 Phys. Fluids, 22, 1500.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1981 Phys. Fluids, 24, 638.CrossRefGoogle Scholar
Huba, J. D., Gladd, N. T. & Papadopoulos, K. 1978 J. Geophys. Res. 83, 5217.CrossRefGoogle Scholar
Huba, J. D. & Ossakow, S. L. 1981 J. Geophys. Res. 86, 829.CrossRefGoogle Scholar
Kelley, M. C., Pfaff, R., Baker, K. D., Ulwick, J. C., Livingston, R., Rino, C. & Tsunoda, R. 1982 J. Geophys. Res. 87, 1575.CrossRefGoogle Scholar
Kelley, M. C. 1982 Phys. Fluids, 25, 1002.CrossRefGoogle Scholar
Krall, N. A. & Rosenbluth, M. N. 1965 Phys. Fluids, 8, 1488.CrossRefGoogle Scholar
Rosenbluth, M. N., Krall, N. A. & Rostoker, N. 1962 Nucl. Fusion Supp. Part l, 143.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases (2nd revised edn). Interscience.Google Scholar
Thomsen, M. F. & Gary, S. P. 1982 J. Geophys. Res. 87, 3551.CrossRefGoogle Scholar