Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:25:05.186Z Has data issue: false hasContentIssue false

Collision and ionization effects in a plasma sheath

Published online by Cambridge University Press:  13 March 2009

Pung Nien Hu
Affiliation:
Space Sciences Incorporated, 301 Bear Hill Road, Waltham, Massachusetts
Sigi Ziering
Affiliation:
Space Sciences Incorporated, 301 Bear Hill Road, Waltham, Massachusetts

Abstract

This paper examines analytically the transition domain between collisionless and collision dominated flows in the environment of a plasma sheath. The onset of collisions also brings into focus the concurrent effects due to ionization, which are retained in the theory. An integral method of iteration is established, and the dominant correction terms due to collision and ionization effects are obtained. Various limiting cases are examined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. 1953 J. Math. & Phys. 32, 188.CrossRefGoogle Scholar
Allen, J. E., Boyd, R. L. F. & Reynolds, P. 1956 Proc. Phys. Soc. B 70, 297.CrossRefGoogle Scholar
Anderson, D. G. & Macomber, H. K. 1966 J. Math. & Phys. 45, 109.CrossRefGoogle Scholar
Bernstein, I. & Rabinowitz, I. 1959 Phys. Fluids, 2, 112.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 Phys. Rev. 94, 511.CrossRefGoogle Scholar
Bienkowski, G. K. 1967 Phys. Fluids 10, 381.CrossRefGoogle Scholar
Cercignani, C. & Tironi, G. 1967 Rarefied Gas Dynamics. New York: AcademicGoogle Scholar
Chahine, M. T. & Narasimha, R. 1964 J. Math. & Phys. 43, 163.CrossRefGoogle Scholar
Chou, Y. S., Talbot, L. & Willis, D. R. 1966 Phys. Fluids 9, 2150.CrossRefGoogle Scholar
Cohen, I. M. 1963 Phys. Fluids 6, 149.CrossRefGoogle Scholar
Gautschi, W. & Cahill, W. F. 1964 Handbook of Mathematical Functions. Washington, D.C.: National Bureau of Standards.Google Scholar
Gross, E. P., Jackson, E. A. & Ziering, S. 1957 Ann. Phys. (New York) 1, 141.CrossRefGoogle Scholar
Hamel, B. B. 1965 Phys. Fluids 8, 418.CrossRefGoogle Scholar
Holway, L. H. 1966 Phys. Fluids 9, 1658.CrossRefGoogle Scholar
Hu, P. N. & Ziering, S. 1966a Phys. Fluids 9, 1983.CrossRefGoogle Scholar
Hu, P. N. & Ziering, S. 1966b Phys. Fluids 9, 2168.CrossRefGoogle Scholar
Laframboise, J. 1960 Rarefied Gas Dynamics. New York: Academic Press.Google Scholar
Lam, S. H. 1965 Phys. Fluids 8, 73.CrossRefGoogle Scholar
Langmuir, I. & Mott-Smith, H. M. 1924 Gen. Elec. Rev. 27, 449.Google Scholar
Lees, L. 1965 J. SIAM 13, 278.Google Scholar
Morse, T. F. 1964 Phys. Fluids 7, 2012.CrossRefGoogle Scholar
Self, S. A. 1963 Phys. Fluids 6, 1762.CrossRefGoogle Scholar
Smolderen, J. J. 1966 Rarefied Gas Dynamics. New York: Academic Press.Google Scholar
Su, C. H. & Lam, S. H. 1963 Phys. Fluids 6, 1479.CrossRefGoogle Scholar
Tonks, L. & Langmuir, I. 1929 Phys. Rev. 34, 876.CrossRefGoogle Scholar
Wasserstrom, E., Su, C. H. & Probstein, R. F. 1965 Phys. Fluids 8, 56.CrossRefGoogle Scholar
Willis, D. R. 1961 Rarefied Gas Dynamics. New York: Academic Press.Google Scholar