Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:39:36.134Z Has data issue: false hasContentIssue false

Collapse of the neutral current sheet and reconnection at micro-scales

Published online by Cambridge University Press:  01 April 2008

I. F. SHAIKHISLAMOV*
Affiliation:
Department of Laser Plasmas, Institute of Laser Physics, Novosibirsk 630090, Russia ([email protected])

Abstract

Reconnection physics at micro-scales is investigated in an electron magnetohydrodynamics frame. A new process of collapse of the neutral current sheet is demonstrated by means of analytical and numerical solutions. It shows how at scales smaller than ion inertia length a compression of the sheet triggers an explosive evolution of current perturbation. Collapse results in the formation of a intense sub-sheet and then an X-point structure embedded into the equilibrium sheet. Hall currents associated with this structure support high reconnection rates. Nonlinear static solution at scales of the electron skin reveals that electron inertia and small viscosity provide an efficient mechanism of field lines breaking. The reconnection rate does not depend on the actual value of viscosity, while the maximum current is found to be restricted even for space plasmas with extremely rare collisions. The results obtained are verified by a two-fluid large-scale numerical simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Biskamp, D. 2000 Magnetic Reconnection in Plasmas. Cambridge: Cambridge University Press.Google Scholar
[2]Priest, E. R. and Forbes, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge: Cambridge University Press.Google Scholar
[3]Aydemir, A. Y. 1992 Phys. Fluids B 4, 3469.Google Scholar
[4]Mandt, M. E., Denton, R. E. and Drake, J. F. 1994 Geophys. Res. Lett. 21, 73.Google Scholar
[5]Hesse, M. and Winske, D. J. 1998 Geophys. Res. 103, 26479.Google Scholar
[6]Shay, M. A., Drake, J. F., Rogers, B. N. and Denton, R. E. 1999 Geophys. Res. Lett. 26, 2163.Google Scholar
[7]Fitzpatrick, R. and Porcelli, F. 2004 Phys. Plasmas 11 (10), 4713.Google Scholar
[8]Ma, Z. W. and Bhattacharjee, A. 2001 J. Geophys. Res. 106 (A3), 3773.Google Scholar
[9]Shay, M. A., Drake, J. F., Swisdak, M. and Rogers, B. N. 2004 Phys. Plasmas 11 (5), 2199.Google Scholar
[10]Ricci, P., Lapenta, G. and Brackbill, J. U. 2002 J. Comput. Phys. 183, 117.Google Scholar
[11]Karimabadi, H.Krauss-Varban, D.Huba, J. D. and Vu, H. X. 2004 J. Geophys. Res. 109, A09205.Google Scholar
[12]Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E.Hesse, M.Kuznetsova, M.Ma, Z. W.Bhattacharjee, A.Otto, A. and Pritchett, P. L. 2001 J. Geophys. Res. 106, 3715.Google Scholar
[13]Biskamp, D. 2003 Energy Conversion and Particle Acceleration in Solar Corona (ed. Klein, K. L.). Berlin: Springer, p. 109.Google Scholar
[14]Cothran, C. D., Landreman, M., Brown, M. R. and Matthaeus, W. H. 2005 Geoph. Res. Lett. 32, L03105.Google Scholar
[15]Shay, M. A., Drake, J. F., Rogers, B. N. and Denton, R. E. 2001 J. Geophys. Res. 106, 3759.Google Scholar
[16]Hesse, M., Schindler, K., Birn, J. and Kuznetsova, M. 1999 Phys. Plasmas 6 (5), 1781.Google Scholar
[17]Pritchett, P. L. 2001 J. Geophys. Res. 106, 3783.Google Scholar
[18]Rogers, B. N., Denton, R. E., Drake, J. F. and Shay, M. A. 2001 Phys. Rev. Lett. 87 (19), 195004.Google Scholar
[19]Hesse, M., Kuznetsova, M. and Hoshino, M. 2002 Geophys. Res. Lett. 29, 2001GL014714.Google Scholar
[20]Ricci, P., Lapenta, G. and Brackbill, J. U. 2002 Geophys. Res. Lett. 29, 2008.Google Scholar
[21]Porcelli, F., Borgogno, D., Califano, F., Grasso, D., Ottaviani, M. and Pegoraro, F. 2002 Plasma Phys. Control. Fusion 44, B389.Google Scholar
[22]Ricci, P., Brackbill, J. U., Daughton, W. and Lapenta, G. 2004 Phys. Plasmas 11 (8), 2199.Google Scholar
[23]Yin, L. and Winske, D. 2003 Phys. Plasmas 10, 1595.Google Scholar
[24]Wang, X., Bhattacharjee, A. and Ma, Z. W. 2001 Phys. Rev. Lett. 87 (26), 265003.Google Scholar
[25]Terasava, T. 1983 Geoph. Res. Lett. 10, 475.CrossRefGoogle Scholar
[26]Shaikhislamov, I. F. 2004 J. Plasma Phys. 70, 1.Google Scholar
[27]Ottaviani, M. and Porcelli, F. 1993 Phys. Rev. Lett. 71 (23), 3803.Google Scholar
[28]Ma, Z. W. and Bhattacharjee, A. 1999 Geophys. Res. Lett. 26 (22), 3367.Google Scholar
[29]Dorelli, J. C. and Birn, J. 2001 Phys. Plasmas 8, 4010.Google Scholar
[30]Attico, N., Califano, F. and Pegoraro, F. 2000 Phys. Plasmas 7, 2381.Google Scholar
[31]Dorelli, J. C. 2003 Phys. Plasmas 10 (8), 3309.Google Scholar
[32]Craig, I. J. D., Heerikhuisen, J. and Watson, P. G. 2003 Phys. Plasmas 10 (8), 3120.Google Scholar
[33]Yin, L., Winske, D., Gary, S. P. and Birn, J. 2002 Phys. Plasmas 9, 2575.Google Scholar
[34]Birn, J., Galsgaard, K., Hesse, M., Hoshino, M., Huba, J.Lapenta, G.Pritchett, P. L.Schindler, K.Yin, L.Büchner, J.Neukirch, T. and Priest, E. R. 2005 Geophys. Res. Lett. 32, L06105.Google Scholar
[35]Fitzpatrick, R. 2004 Phys. Plasmas 11 (3), 937.Google Scholar
[36]Ottaviani, M. and Porcelli, F. 1995 Phys. Plasmas 2, 4104.Google Scholar
[37]Shaikhislamov, I. F. 2005 Plasma Phys. Control. Fusion 47, 1.Google Scholar
[38]Del Sarto, D.Califano, F. and Pegoraro, F. 2005 Phys. Plasmas 8, 012317.Google Scholar