Published online by Cambridge University Press: 01 April 2008
Reconnection physics at micro-scales is investigated in an electron magnetohydrodynamics frame. A new process of collapse of the neutral current sheet is demonstrated by means of analytical and numerical solutions. It shows how at scales smaller than ion inertia length a compression of the sheet triggers an explosive evolution of current perturbation. Collapse results in the formation of a intense sub-sheet and then an X-point structure embedded into the equilibrium sheet. Hall currents associated with this structure support high reconnection rates. Nonlinear static solution at scales of the electron skin reveals that electron inertia and small viscosity provide an efficient mechanism of field lines breaking. The reconnection rate does not depend on the actual value of viscosity, while the maximum current is found to be restricted even for space plasmas with extremely rare collisions. The results obtained are verified by a two-fluid large-scale numerical simulation.