Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T04:26:09.245Z Has data issue: false hasContentIssue false

Characteristics of the resonant charge transfer in strongly coupled plasmas including quantum and shielding effects

Published online by Cambridge University Press:  09 February 2016

Woo-Pyo Hong
Affiliation:
Department of Electronics Engineering, Catholic University of Daegu, Hayang 38430, South Korea
Young-Dae Jung*
Affiliation:
Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA
*
Email address for correspondence: [email protected]

Abstract

The influence of quantum tunnelling and shielding on the resonant electron transfer process in strongly coupled plasmas is investigated. The screened atomic states and energy eigenvalues are employed to obtain the resonant electron transfer cross-section in strongly coupled plasmas. It is found that the classical resonant electron transfer cross-section increases with an increase of the ion-sphere radius. However, the energy-dependent quantum tunnelling resonant electron transfer cross-section is shown to decrease with increasing ion-sphere radius. It is demonstrated that an increase of the nuclear charge decreases the screening effect on the electron transfer cross-section while the quantum tunnelling effect enhances the resonant electron transfer cross-section in strongly coupled plasmas. In addition, it is shown that the effect of quantum tunnelling on the resonant electron transfer process decreases when both the collision energy and ion-sphere radius increase. The variation of shielding effect on the resonant electron transfer process in strongly coupled plasmas is also discussed.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2013 Shukla–Eliasson attractive force: revisited. J. Plasma Phys. 79, 189196.Google Scholar
Akbari-Moghanjoughi, M. & Shukla, P. K. 2012 Theory for large-amplitude electrostatic ion shocks in quantum plasmas. Phys. Rev. E 86, 066401.Google Scholar
Baimbetov, F. B., Nurekenov, Kh. T. & Ramazanov, T. S. 1995 Pseudopotential theory of classical non-ideal plasmas. Phys. Lett. A 202, 211.Google Scholar
Baimbetov, F. B., Nurekenov, K. H. T. & Ramazanov, T. S. 1996 Electrical conductivity and scattering sections of strongly coupled hydrogen plasmas. Physica A 226, 181.CrossRefGoogle Scholar
Beyer, H. F., Kluge, H.-J. & Shevelko, V. P. 1997 X-ray Radiation of Highly Charged Ions. Springer.Google Scholar
Deutsch, C. 1977 Nodal expansion in a real matter plasma. Phys. Lett. A 60, 317.Google Scholar
Deutsch, C., Gombert, M. M. & Minoo, H. 1978 Classical modelization of symmetry effects in the dense high-temperature electron gas. Phys. Lett. A 66, 381.CrossRefGoogle Scholar
Dzhumagulova, K. N., Masheeva, R. U., Ramazanov, T. S. & Donkó, Z. 2014 Effect of magnetic field on the velocity autocorrelation and the caging of particles in two-dimensional Yukawa liquids. Phys. Rev. E 89, 033104.CrossRefGoogle ScholarPubMed
Fridman, A. 2008 Plasma Chemistry. Cambridge University Press.Google Scholar
Fridman, A. & Kennedy, L. A. 2011 Plasma Physics and Engineering, 2nd edn. Taylor and Francis.Google Scholar
Fujimoto, T. 2004 Plasma Spectroscopy. Oxford University Press.Google Scholar
Hong, W.-P. & Jung, Y.-D. 2014 Quantum tunneling resonant electron transfer process in Lorentzian plasmas. Phys. Plasmas 21, 083301.Google Scholar
Janev, R. K., Presnyakov, L. P. & Shevelko, V. P. 1985 Physics of Highly Charged Ions. Springer.Google Scholar
Jung, Y.-D. 1999 Orientation phenomena for electron-ion collisional excitations in strongly coupled plasmas. Eur. Phys. J. D 7, 249.Google Scholar
Jung, Y.-D. 2000 Plasma screening effects on inelastic Compton scattering of photons by hydrogenic ions in strongly coupled classical plasmas. Phys. Plasmas 7, 819.Google Scholar
Jung, Y.-D. 2005a Collective effects on the symmetric resonant charge transfer in partially ionized hydrogen plasma. Appl. Phys. Lett. 86, 021502.Google Scholar
Jung, Y.-D. 2005b Plasma screening effects on resonant charge transfer in strongly coupled plasmas. Europhys. Lett. 69, 753.Google Scholar
Jung, Y.-D. & Gould, R. J. 1991 Energies and wave functions for many-electron atoms. Phys. Rev. A 44, 111.Google Scholar
Jung, Y.-D. & Jeong, H.-D. 1996 Bremsstrahlung in electron-ion Coulomb scattering in strongly coupled plasma using the hyperbolic-orbit trajectory method. Phys. Rev. E 54, 1912.Google Scholar
Kleinstreuer, C. 2010 Modern Fluid Dynamics. Springer.Google Scholar
Komnik, A. & Gogolin, A. O. 2003 Resonant tunneling between Luttinger liquids: a solvable case. Phys. Rev. Lett. 90, 246403.Google Scholar
Mathews, J. & Walker, R. L. 1970 Mathematical Methods of Physics, 2nd edn. Addison-Wesley.Google Scholar
Omarbakiyeva, Y. A., Fortmann, C., Ramazanov, T. S. & Röpke, G. 2010 Cluster virial expansion for the equation of state of partially ionized hydrogen plasma. Phys. Rev. E 82, 026407.Google Scholar
Omarbakiyeva, Y. A., Ramazanov, T. S. & Röpke, G. 2009 The electron–atom interaction in partially ionized dense plasmas. J. Phys. A 42, 214045.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N. & Gabdullin, M. T. 2010 Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma. Phys. Plasmas 17, 042703.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N., Omarbakiyeva, Yu. A. & Röpke, G. 2006 Effective polarization interaction potentials of the partially ionized dense plasma. J. Phys. A 39, 4369.Google Scholar
Ramazanov, T. S., Moldabekov, Zh. A., Dzhumagulova, K. N. & Muratov, M. M. 2011 Pseudopotentials of the particles interactions in complex plasmas. Phys. Plasmas 18, 103705.Google Scholar
Ramazanov, T. S., Moldabekov, Zh. A., Gabdullin, M. T. & Ismagambetova, T. N. 2014 Interaction potentials and thermodynamic properties of two component semiclassical plasma. Phys. Plasmas 21, 012706.Google Scholar
Rapp, D. & Francis, W. E. 1962 Charge exchange between gaseous ions and atoms. J. Chem. Phys. 37, 2631.Google Scholar
Razavy, M. 2003 Quantum Theory of Tunneling. World Scientific.Google Scholar
Salpeter, E. E. 1954 Electrons screening and thermonuclear reactions. Austral. J. Phys. 7, 373.CrossRefGoogle Scholar
Salzmann, D. 1998 Atomic Physics in Hot Plasmas. Oxford University Press.Google Scholar
Shevelko, V. P. & Vainshtein, L. A. 1993 Atomic Physics for Hot Plasmas. Institute of Physics.Google Scholar
Shukla, P. K. & Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885.Google Scholar
Shukla, P. K. & Eliasson, B. 2012 Novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007.Google ScholarPubMed
Song, M.-Y. & Jung, Y.-D. 2003 Collective and plasma screening effects on electron transfer processes in nonideal plasmas. Phys. Scr. 68, 160.Google Scholar