Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:47:51.880Z Has data issue: false hasContentIssue false

Characteristics of surface-wave propagation in dissipative cylindrical plasma columns

Published online by Cambridge University Press:  13 March 2009

J. Margot
Affiliation:
Groupe de physique des plasmas, Département de Physique, Université de Montréal, B.P. 6128, Succursale A, Montréal Québec, Canada H3C 3J7
M. Moisan
Affiliation:
Groupe de physique des plasmas, Département de Physique, Université de Montréal, B.P. 6128, Succursale A, Montréal Québec, Canada H3C 3J7

Abstract

Electromagnetic surface waves dissipate energy as they propagate in plasma columns. The transfer of energy to the discharge generally occurs through collisional processes — hence the name ‘collisional’ surface waves. It affects the direction of propagation of the wave, and is responsible in particular for the turning back of the axial wavenumber on the phase diagram. The rate of collisions also influences the respective contribution of surface waves and radiation (unguided) waves to the total electromagnetic field. These considerations are of interest in improving the reliability and accuracy of the electron density diagnostic based on surface waves. This paper takes advantage of the many articles published in the domain of guided waves for antennas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasma. MIT Press.Google Scholar
Anicin, B. A. 1970 Fisika 2, 45.Google Scholar
Atanassov, V., Mateev, E. & Zhelyazkov, I. 1981 Phys. Lett. 86 A, 414.Google Scholar
Boisse-Laporte, C. 1993 Microwave Discharges: Fundamentals and Applications (ed. Ferreira, C. M. & M. Moisan), p. 25. Plenum.CrossRefGoogle Scholar
Chaker, M., Moisan, M. & Zakrzewski, Z. 1986 Plasma Chem. Plasma Process. 6, 79.CrossRefGoogle Scholar
Darchicourt, R., Pasquiers, S., Boisse-Laporte, C., Leprince, P. & Marec, J. 1988 J. Phys. D: Appl. Phys. 21, 293.Google Scholar
Diament, P., Granatstein, V. L. & Schlesinger, S. P. 1966 J. Appl. Phys. 37, 1771.Google Scholar
Duncan, J. W. 1959 IRE Trans. Microwave Theory Tech. 7, 257.CrossRefGoogle Scholar
Glaude, V. M. M., Moisan, M., Pantel, R., Leprince, P. & Marec, J. 1980 J. Appl. Phys. 51, 5693.Google Scholar
Gradov, D. M. & Stenflo, L. 1984 Plasma Phys. Contr. Fusion 26, 759.Google Scholar
Gradov, D., Shivarova, A. & Boardman, A. D. 1987 J. Plasma Phys. 38, 427.Google Scholar
Gupta, K. C. & Singh, A. 1967 int. J. Electron. 23, 323.Google Scholar
Heald, M. A. & Wharton, C. B. 1965 Plasma Diagnostics with Microwaves. Wiley.CrossRefGoogle Scholar
Hessel, A. 1969 Antenna Theory, part 2 (ed. Collin, R. E. & Zucker, F. J.), p. 151. McGraw-Hill.Google Scholar
Kampmann, B. 1979 Z. Naturforsch. 34a, 423.Google Scholar
Marcuvitz, N. 1956 Trans. IRE AP-4, 192.Google Scholar
Marec, J., Bloyet, E., Chaker, M., Leprince, P. & Nghiem, P. 1983 Electrical Breakdown and Discharges in Gases (ed. Kunhardt, E. E. & Luessen, L. H.), p. 347. Plenum.CrossRefGoogle Scholar
Margot, J. & Moisan, M. 1991 J. Phys. D: Appl. Phys. 24, 1765.Google Scholar
Margot, J., Johnston, T. W. & Musil, J. 1992 Microwave Excited Plasmas (ed. Moisan, M. & Pelletier, J.), chap. 6, p. 181. Elsevier.Google Scholar
Margot-Chaker, J., Moisan, M., Chaker, M., Glaude, V. M. M., Lauque, P., Paraszczak, J. & Sauvé, G. 1989 J. Appl. Phys. 66, 4134.Google Scholar
Margot-Chaker, J., Moisan, M., Zakrzewski, Z., Glaude, V. M. M. & Sauvé, G. 1988 Radio Sci. 23, 1120.CrossRefGoogle Scholar
Moisan, M., Pantel, R. & Hubert, J. 1990 Contrib. Plasma Phys. 30, 293.Google Scholar
Moisan, M., Shivarova, A. & Trivelpiece, A. W. 1982 Plasma Phys. 24, 1331.CrossRefGoogle Scholar
Moisan, M. & Zakzrewski, Z. 1986 Radiative Processes in Discharge Plasmas (ed. Proud, J. & L. H. Luessen), p. 381. Plenum.CrossRefGoogle Scholar
Sammadar, S. N. & Yildiz, M. 1964 Can. J. Phys. 42, 632.Google Scholar
Shivarova, A. & Zhelyazkov, I. 1982 Electromagnetic Surface Modes (ed. Boardman, A. D.), p. 465. Wiley.Google Scholar
Stenflo, L. & Gradov, O. M. 1986 IEEE Trans. Plasma Sci. 14, 554.Google Scholar
Tamir, T. & Oliner, A. A. 1962 IRE Trans. Antennas Propagation 10, 55.Google Scholar
Tamir, T. & Oliner, A. A. 1963 a Proc. IEEE 51, 317.Google Scholar
Tamir, T. & Oliner, A. A. 1963 b Proc. IEEE 110, 310.Google Scholar
Tamir, T. & Oliner, A. A. 1963 c Proc. IEEE 110, 325.Google Scholar
Trivelpiece, A. W. & Gould, R. W. 1959 J. Appl. Phys. 30, 1784.Google Scholar
Zethoff, M. & Kortshagen, U. 1992 J. Phys. D: Appi. Phys. 25, 1574.Google Scholar
Zucker, F. J. 1969 Antenna Theory, part 2 (ed. Collin, R. E. & Zucker, F. J.), p. 298. McGraw-Hill.Google Scholar