Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:01:18.511Z Has data issue: false hasContentIssue false

A catastrophe-theory study of a two-chamber model for a tokamak scrape-off and divertor

Published online by Cambridge University Press:  13 March 2009

Alkesh Punjabi
Affiliation:
Department of Mathematics, Hampton University, Hampton, Virginia 23668, U.S.A.

Abstract

The two-chamber model (TCM) of Singer and Langer is employed to study the plasma transport in the scrape-off and divertor regions of a tokamak. Collisiondominated transport along the field lines is considered, with a. geometric-mean flux-limited expression for parallel electron heat conduction. An analytic method for the catastrophe-theory study of the TCM is developed. Maxwell convention for the catastrophes is adopted. Catastrophes occur when the energy flux entering the divertor chamber from the main plasma scrape-off, the recycling coefficient and the ratio of electron temperatures in the scape-off to that in the divertor exceed some threshold values. It is seen that the behaviour of the plasma during these catastrophes is in qualitative agreement with the experimentally observed features of the plasma during the H-mode transition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, G. S. & Shenoy, S. R. 1981 Phys. Rev. A 23, 2719.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics, vol. 1 (ed. Leontovich, M. A.), p. 205. Consultants Bureau.Google Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 423.Google Scholar
Clause, P. J. & Balescu, R. 1982 Plasma Phys. 24, 1429.CrossRefGoogle Scholar
Gilmore, R. 1981 Catastrophe Theory for Scientists and Engineers. Wiley-Interscience.Google Scholar
Hoshino, K. et al. 1987 Nucl. Fusion, 28, 301.CrossRefGoogle Scholar
Kaye, S. M. et al. 1984 J. Nucl. Mater. 121, 115.Google Scholar
Keilhacker, M. 1984 Plasma Phys. Contr. Fusion, 26, 49.Google Scholar
Keilhacker, M. 1987 Plasma Phys. Contr. Fusion, 29, 1401.CrossRefGoogle Scholar
Keilhacker, M. & ASDEX Team 1985 Nucl. Fusion, 25, 1045.CrossRefGoogle Scholar
Langer, W. D. & Singer, C. E. 1985 IEEE Trans. Plasma Sci. 13, 163.CrossRefGoogle Scholar
Luxon, J. et al. 1986 Proceedings of llth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, Japan, Paper A-III-3.Google Scholar
Nagami, M. et al. 1984 Nucl. Fusion, 24, 183.CrossRefGoogle Scholar
Odajima, K. et al. 1986 Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, Japan, Paper A-III-2.Google Scholar
Ohkawa, T., Chu, M. S., Hinton, F. L., Liu, C. S. & Lee, Y. C. 1983 Phys. Rev. Lett. 51, 2101.CrossRefGoogle Scholar
Ohyabu, N. et al. 1985 Nucl. Fusion, 25, 49.Google Scholar
Post, D., Langer, W. D. & Petravic, M. 1984 J. Nucl. Mater. 121, 171.CrossRefGoogle Scholar
Poston, T. & Stewart, I. 1978 Catastrophe Theory and Its Applications. Pitman.Google Scholar
Punjabi, A. 1988 Phys. Lett. 133, 315.CrossRefGoogle Scholar
Sengoku, S. et al. 1987 Phys. Rev. Lett. 58, 450.CrossRefGoogle Scholar
Singer, C. E. & Langer, W. D. 1983 Phys. Rev. A 28, 994.CrossRefGoogle Scholar
Stewart, I. 1981 Physica, 2D, 245.Google Scholar
Tanga, A. et al. 1986 Proceedings of 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, Japan, Paper K-I-1.Google Scholar
Tanga, A. et al. 1987 Nucl. Fusion, 11, 1877.CrossRefGoogle Scholar
Thom, R. 1975 Structural Stability and Morphogenesis. Benjamin/Addison-Wesley.Google Scholar
Wagner, F. et al. 1982 Phys. Rev. Lett. 49, 1408.Google Scholar
Zeeman, E. C. 1977 Catastrophe Theory: Selected Papers (1972–77). Addison-Wesley.Google Scholar