Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T13:39:07.574Z Has data issue: false hasContentIssue false

The Bohm-sheath criterion in plasmas containing electrons and multiply charged ions

Published online by Cambridge University Press:  12 November 2012

MANSOUR KHORAMABADI
Affiliation:
Department of Physics, Borujerd Branch, Islamic Azad University, Borujerd, Iran ([email protected])
HAMID GHOMI
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran, Iran
P. K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum, Germany Department of Mechanical and Aerospace Engineering & Center for Energy Research, University of California San Diego, La Jolla, CA 92093, USA

Abstract

Using the multi-fluid model of plasmas, we have analytically obtained a generalized Bohm criterion in the plasma, including hot electrons and multiply charged ions, and have numerically examined its validity. The new Bohm-sheath criterion shows that increasing the charge number of positive ions and decreasing the charge number of negative ions would increase the minimum ion speed that is required for the Bohm criterion to satisfy.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, R. M. S., Benilov, M. S. and Naidis, G. V. 2000 J. Phys. D: Appl. Phys. 33, 960.CrossRefGoogle Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (eds. Guthry, A. and Wakerling, R. K.). New York: McGraw-Hill, 77 pp.Google Scholar
Braithwaite, N. St. J. and Allen, J. E. 1988 J. Phys. D: Appl. Phys. 21, 1733.CrossRefGoogle Scholar
Chen, X. P. 1997 Phys. Plasmas 5, 804.CrossRefGoogle Scholar
Das, G. C., Singha, B. and Chutia, J. 1999 Phys. Plasmas 6, 3685.CrossRefGoogle Scholar
Franklin, R. N. and Snell, J. 1998 J. Phys. D: Appl. Phys. 31, 2532.CrossRefGoogle Scholar
Ghomi, H. and Khoramabadi, M. 2010 J. Plasma Phys. 76, 247.CrossRefGoogle Scholar
Ghomi, H., Khoramabadi, M., Shukla, P. K. and Ghorannevis, M. 2010 J. Appl. Phys. 108, 063302.CrossRefGoogle Scholar
Godyak, V. A. 1982 Phys. Lett. A 89, 80.CrossRefGoogle Scholar
Gudmundsson, J. T. and Liebermann, M. A. 2011 Phys. Rev. Lett. 107, 045002.CrossRefGoogle Scholar
Hershkowitz, N. 2005 Phys. Plasmas 12, 055502.CrossRefGoogle Scholar
Lee, D., Oksuz, L. and Hershkowitz, N. 2007 Phys. Rev. Lett. 99, 155004.CrossRefGoogle Scholar
Lee, D., Severn, D., Oksuz, L. and Hershkowitz, N. 2006 J. Phys. D: Appl. Phys. 39, 5230.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Material Processing. New York: Wiley.CrossRefGoogle Scholar
Liu, J. U., Wang, Z. X., Wang, X., Zhang, Q., Zou, X. and Zhang, Y. 2003 Phys. Plasmas 10, 3507.CrossRefGoogle Scholar
Riemann, K.-U. 1991a J. Phys. D: Appl. Phys. 24, 493.CrossRefGoogle Scholar
Riemann, K.-U. 1991b Phys. Fluids B3, 3331.CrossRefGoogle Scholar
Riemann, K.-U. 1992 Phys. Fluids B4, 2693.CrossRefGoogle Scholar
Valentini, H.-B. 1996 Phys. Plasmas 3, 1459.CrossRefGoogle Scholar