Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T00:32:04.422Z Has data issue: false hasContentIssue false

Beat Hamiltonians and generalized ponderomotive forces in hot magnetized plasma

Published online by Cambridge University Press:  13 March 2009

Shayne Johnston
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Allan N. Kaufman
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
George L. Johnston
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Abstract

A novel approach to the theory of nonlinear mode coupling in hot magnetized plasma is presented. The formulation retains the conceptual simplicity of the familiar ponderomotive-scalar-potential method, but removes the approximations. The essence of the approach is a canonical transformation of the single-particle Hamiltonian, designed to eliminate those interaction terms which are linear in the fields. The new entity (the ‘oscillation centre’) then has no first-order uttering motion, and generalized ponderomotive forces appear as nonlinear terms in the transformed Hamiltonian. This viewpoint is applied to derive a compact symmetric formula for the general three-wave coupling coefficient in hot uniform magnetized plasma, and to extend the conventional ponderomotive-scalar-potential method to the domain of strongly magnetized plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, R. L. & Chen, L. 1976 Phys. Fluids, 19, 1392.CrossRefGoogle Scholar
Bujarbarua, S., Sen, A. & Kaw, P. K. 1974 Phys. Lett. 47A, 464.CrossRefGoogle Scholar
Cary, J. R. & Kaufman, A. N. 1977 Phys. Rev. Lett. 39, 402.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Non-linear Plasma Theory. Academic.Google Scholar
Dewar, R. L. 1973 Phys. Fluids, 16, 1102.CrossRefGoogle Scholar
Dewar, R. L. 1976 J. Phys. A 9, 2043.Google Scholar
Dewar, R. L. 1978 a J. Phys. A 11, 9.Google Scholar
Dewar, R. L. 1978 b J. Math. Phys. 19, 1946.CrossRefGoogle Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids, 17, 778.CrossRefGoogle Scholar
Frieman, E. A. 1963 J. Math. Phys. 4, 410.CrossRefGoogle Scholar
Goldstein, H. 1950 Classical Mechanics, p. 240. Addison-Wesley.Google Scholar
Hasegawa, A., Mima, K., Sprangle, P., Szu, H. H. & Granatstein, V. L. 1976 Appl. Phys. Lett. 29, 542.CrossRefGoogle Scholar
Johnston, S. 1976 Phys. Fluids, 19, 93.CrossRefGoogle Scholar
Johnston, S. & Kaufman, A. N. 1977 Plasma Physics (ed. Wilhelmsson, H.), p. 159. Plenum.CrossRefGoogle Scholar
Johnston, S. & Kaufman, A. N. 1978 Lawrence Berkeley Laboratory Report LBL-7252.Google Scholar
Kibble, T. W. B. 1966 Phys. Rev. 150, 1060.CrossRefGoogle Scholar
Larsson, J. 1975 J. Plasma Phys. 14, 467.CrossRefGoogle Scholar
Larsson, J. & Stenflo, L. 1976 Beitr. aus der Plasmaphysik, 16, 79.CrossRefGoogle Scholar
Lee, K., Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1977 Phys. Fluids, 20, 51.CrossRefGoogle Scholar
Litvak, A. G. & Trakhtengerts, V. Yu. 1971 Soviet Phys. JETP, 33, 921.Google Scholar
Litvak, A. G. & Trakhtengerts, V. Yu. 1972 Soviet Phys. JETP, 35, 123.Google Scholar
Manheimer, W. M. & Ott, E. 1974 Phys. Fluids, 17, 1413.CrossRefGoogle Scholar
Motz, H. & Watson, C. 1967 Adv. Electron. Electron Phys. 23, 153.CrossRefGoogle Scholar
Ott, E., Mcbride, J. B. & Orens, J. H. 1973 Phys. Fluids, 16, 270.CrossRefGoogle Scholar
Porkolab, M. & Chang, R. P. H. 1972 Phys. Fluids, 15, 283.CrossRefGoogle Scholar
Porkolab, M. 1974 Phys. Fluids, 17, 1432.CrossRefGoogle Scholar
Sandri, G. 1963 Ann. Phys. (N.Y.) 24, 332, 380.CrossRefGoogle Scholar
Sandri, G. 1965 Nuovo Cimento, 36, 67.CrossRefGoogle Scholar
Sanuki, H. & Schmidt, G. 1977 J. Phys. Soc. Japan, 42, 664.CrossRefGoogle Scholar
Simon, A. & Thompson, W. B. (Eds.) 1976 Advances in Plasma Physics, Volume 6, Part 1. Interscience.Google Scholar
Stenflo, L. 1973 Planet. Space Sci. 21, 391.CrossRefGoogle Scholar
Stenflo, L. & Larsson, J. 1977 Plasma Physics (ed. Wilhelmsson, H.), p. 152. Plenum.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, § § 12. McGraw-Hill.Google Scholar
Sturrock, P. A. 1960 Ann. Phys. (N.Y.) 9, 422.CrossRefGoogle Scholar
Tsytovich, V. N. 1977 Theory of Turbulent Plasma. Plenum.CrossRefGoogle Scholar
Verheest, F. 1976 Plasma Phys. 18, 225.CrossRefGoogle Scholar