Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:19:38.123Z Has data issue: false hasContentIssue false

Basis of the quasi-steady plasma accelerator theory in the presence of a longitudinal magnetic field

Published online by Cambridge University Press:  01 April 2008

ANDREY N. KOZLOV*
Affiliation:
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia ([email protected])

Abstract

The analytic and numerical approaches to the investigation of the two-dimensional steady-state plasma flows are analyzed and compared with reference to a plasma accelerator channel in the presence of a longitudinal magnetic field. The present study continues a cycle of research into the plasma flows in the coaxial channels with the traditional azimuthal magnetic field. The additional longitudinal field opens new possibilities for controlling the dynamic processes and achieving the transonic flows. The research is based on the magnetohydrodynamic equations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Morozov, A. I. 1978 Physical Principles of Space Electric Jet Engines. Moscow: Atomizdat.Google Scholar
[2]Morozov, A. I. and Solov'ev, L. S. 1980 Steady-state Plasma Flows in a Magnetic Field Reviews of Plasma Physics, 8) (ed. Leontovich, V. A.). New York: Consultants Bureau, p. 3.Google Scholar
[3]Morozov, A. I. 1990 Principles of coaxial (quasi) steady plasma accelerators (QSPA). Sov. J. Plasma Phys. 16, 69.Google Scholar
[4]Morozov, A. I. 2006 Introduction in Plasmadynamics. Moscow: Fizmatlit.Google Scholar
[5]Rosenberg, M. and Shukla, P. K. 2007 Instability of obliquely propagating dust waves in a collisional highly magnetized plasma. J. Plasma Phys. 73, 189.CrossRefGoogle Scholar
[6]Brodin, G., Stenflo, L. and Shukla, P. K. 2007 Nonlinear interactions between three inertial Alfvén waves. J. Plasma Phys. 73, 9.CrossRefGoogle Scholar
[7]Bingham, R., Silva, L. O., Trines, R. M. G. M., Mendonca, J. T., Shukla, P. K.Mori, W. B. and Cairns, R. A. 2005 Wave kinetic treatment of forward four-wave stimulated scattering instabilities. J. Plasma Phys. 71, 899.CrossRefGoogle Scholar
[8]Mahmoud, S. T., Pandey, H. D. and Sharma, R. P. 2003 Beat-wave excitation of electron plasma wave by cross-focusing of two intense laser beams. J. Plasma Phys. 69, 45.Google Scholar
[9]Shukla, P. K., Eliasson, B. and Koepke, M. 2006 Electron parallel-flow shear driven low-frequency electromagnetic modes in collisionless magnetoplasma. Phys. Plasmas 13, 052115.CrossRefGoogle Scholar
[10]Dodin, I. Y. and Fisch, N. J. 2005 Approximate integrals of radiofrequency-driven particle motion in a magnetic field. J. Plasma Phys. 71, 289.CrossRefGoogle Scholar
[11]Belan, V. G., Zolotarev, S. P., Levashov, V. F., Mainashev, V. S., Morozov, A. I.Podkoviirov, V. L. and Skvortsov, Iu. V. 1990 Experimental study of a quasi-stationary plasma accelerator power supplied by inductive and capacitive energy storage devices. Sov. J. Plasma Phys. 16, 96.Google Scholar
[12]Tereshin, V. I., Chebotarev, V. V., Garkusha, I. E., Makhlaj, V. A., Mitina, N. I.Morozov, A. I.Solyakov, D. G.Trubchaninov, S. A.Tsarenko, A. V., and Wuerz, H. 2002 Powerful quasi-steady-state plasma accelerator for fusion experiments. Brazil. J. Phys. 32, 165.CrossRefGoogle Scholar
[13]Tereshin, V. I., Bandura, A. N., Byrka, O. V., Chebotarev, V. V., Garkusha, I. E.Landman, I.Makhlaj, V. A.Neklyudov, I. M.Solyakov, D. G. and Tsarenko, A. V. 2007 Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces. Plasma Phys. Control. Fusion 49, A231.CrossRefGoogle Scholar
[14]Ananin, S. I., Astashinskii, V. M., Kostyukevich, E. A.Man'kovskii, A. A. and Min'ko, L. Ya. 1998 Interferometric studies of the processes occurring in a quasi-steady high current plasma accelerator. Plasma Phys. Rep. 24, 936.Google Scholar
[15]Dyakonov, G. A. and Tikhonov, V. B. 1994 Experimental investigation of the influence of acceleration channel geometry and external magnetic field on modes of plasma flow in coaxial quasi-stationary plasma accelerator (QSPA) P-50A. Sov. J. Plasma Phys. 20, 533.Google Scholar
[16]Brushlinsky, K. V. and Morozov, A. I. 1980 Calculation of Two-dimensional Plasma Channel Flows (Reviews of Plasma Physics, 8)(ed. Leontovich, V. A.). New York: Consultants Bureau, p. 105.Google Scholar
[17]Brushlinsky, K. V., Kozlov, A. N. and Morozov, A. I. 1985 Numerical investigation of two-dimensional plasma and self-ionizing gas flows by means of test particle model. Sov. J. Plasma Phys. 11, 1358.Google Scholar
[18]Brushlinsky, K. V., Zaborov, A. M., Kozlov, A. N., Morozov, A. I. and Savelyev, V. V. 1990 Numerical simulation of plasma flows in QSPA. Sov. J. Plasma Phys. 16, 79.Google Scholar
[19]Kozlov, A. N. 1992 Plasma dynamics peculiarities in the process of the flow stabilization in QSPA. Sov. J. Plasma Phys. 18, 369.Google Scholar
[20]Kozlov, A. N. 2000 Ionization and recombination kinetics in a plasma accelerator channel. Fluid Dynam. 35, 784.CrossRefGoogle Scholar
[21]Morozov, A. I. and Savelyev, V. V. 2000 Fundamentals of Stationary Plasma Thruster Theory (Reviews of Plasma Physics, 21) (ed. Leontovich, V. A.). New York: Consultants Bureau, p. 203.Google Scholar
[22]Bugrova, A. I., Desiatskov, A. D., Morozov, A. I. and Kharchevnikov, V. K. 1992 Experimental investigation of the near-wall conductivity. Sov. J. Plasma Phys. 18, 963.Google Scholar
[23]Raitses, Y. and Fisch, N. J. 2001 Parametric investigations of a nonconventional Hall thrusters. Phys. Plasmas 8, 052579.CrossRefGoogle Scholar
[24]Smirnov, A., Raitses, Y. and Fisch, N. J. 2007 Experimental and theoretical studies of cylindrical Hall thrusters. Phys. Plasmas 14, 057106.CrossRefGoogle Scholar
[25]Fruchtman, A. 2003 Limits on the efficiency of several electric thruster configurations. Phys. Plasmas 10, 052100.CrossRefGoogle Scholar
[26]Raitses, Y., Staack, D., Keidar, M. and Fisch, N. J. 2005 Electron–wall interaction in Hall thruster. Phys. Plasmas 12, 057104.CrossRefGoogle Scholar
[27]Kozlov, A. N. 2002 Model of the near-wall conductivity in the vicinity of a macroscopically inhomogeneous, mirror-reflecting surface. Plasma Phys. Rep. 28, 157.CrossRefGoogle Scholar
[28]Serov, Yu. L. 2004 Ion-acoustic model of instability of strong shock waves. Russian–American J. Actual Prob. Aviation Aerospace Syst. 2 (18), 49.Google Scholar
[29]Bobashev, S. V., Golovachov, Y. P. and Van Wie, D. M. 2003 Deceleration of supersonic plasma flow by an applied magnetic field. J. Propulsion Power 19, 538.CrossRefGoogle Scholar
[30]Huang, J., Corke, T. C. and Thomas, F. O. 2006 Unsteady plasma actuators for separation control of low-pressure turbine blades. AIAA Journal 44, 1477.CrossRefGoogle Scholar
[31]Kozlov, A. N. 2003 Influence of longitudinal magnetic field on the Hall effect in the plasma accelerator channel. Fluid Dynam. 38, 653.CrossRefGoogle Scholar
[32]Kozlov, A. N. 2005 Modeling of rotating flows in the plasma accelerator channel with longitudinal magnetic field. J. Prob. Atomic Sci. Technol. Plasma Phys. 1, 104.Google Scholar
[33]Kozlov, A. N. 2006 Dynamics of the rotating flows in the plasma accelerator channel with longitudinal magnetic field. Plasma Phys. Rep. 32, 378.CrossRefGoogle Scholar
[34]Braginskii, S. I. 1966 Transport Phenomena in Plasma (Reviews of Plasma Physics, 1) (ed. Leontovich, V. A.). New York: Consultants Bureau, p. 253.Google Scholar
[35]Kulikovskii, A. G., Pogorelov, N. V. and Semenov, A. Yu. 2001 Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Monographs and Surveys in Pure and Applied Mathematics, 118). London: Chapman and Hall/CRC.Google Scholar
[36]Oran, E. S. and Boris, J. P. 1987 Numerical Simulation of Reactive Flow. New York: Elsevier.Google Scholar