Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T18:51:29.472Z Has data issue: false hasContentIssue false

BABE – a brush cathode discharge for thermal fluctuation measurements

Published online by Cambridge University Press:  08 December 2014

S. Ratynskaia*
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
G. Dilecce
Affiliation:
Istituto di Metodologie Inorganiche e dei Plasmi - CNR, Bari, Italy
P. Tolias
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

For experimental tests of fluctuation theory in ideal plasmas and plasmas seeded with dust, the ideal environment would be that of stable quiescent plasma. In most laboratory plasmas the homogeneous state of the positive column is often unstable, rare exceptions are the so-called brush cathode discharges, proposed in the 60s, where a specially manufactured cathode allows stable operation in the abnormal glow regime and the only fluctuations present are those due the thermal motion of the particles. Such a device, the BAri Brush Electrode (BABE), has recently been built in a novel configuration that combines the advantages of the inverse design with those of the reflex geometry. The region between the two anodes is essentially field-free and extremely stable in wide range of plasma densities and collisionalities. Unprecedented low fluctuation levels of δn/n ⩽ 10−5 in He and δn/n ⩽ 5 × 10−6 in Ar discharges have been achieved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. and Stepanov, K. N. 1975 Plasma Electrodynamics Volume 2: Non-Linear Theory and Fluctuations. Oxford: Pergamon Press Ltd.Google Scholar
Allison, J. and Chambers, B. 1965 Reflex discharge in argon using brush cathodes. Electron. Lett. 2, 443444.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. and Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Bindslev, H., Hoekzema, J. A., Egedal, J., Fessey, J. A., Hughes, T. P. and Machuzak, J. S. 1999 Fast-ion velocity distributions in JET measured by collective Thomson scattering. Phys. Rev. Lett. 83, 3206.Google Scholar
Bindslev, H.et al. and the TEXTOR team 2006 Fast-ion dynamics in the TEXTOR Tokamak measured by collective Thomson scattering. Phys. Rev. Lett. 97, 205 005.Google Scholar
de Angelis, U., Tolias, P. and Ratynskaia, S. 2012 Effects of dust particles in plasma kinetics: ion dynamics time scales. Phys. Plasmas 19, 073 701.Google Scholar
Demidov, V. I., Ratynskaia, S. and Rypdal, K. 2002 Electric probes for plasmas: the link between theory and instrument. Rev. Sci. Instrum. 73, 340.Google Scholar
Diallo, A. and Skiff, F. 2005 The phase-space-resolved two-point correlation function of ion density fluctuations. Phys. Plasmas 12, 110 701.CrossRefGoogle Scholar
Fasoli, A., Skiff, F., Good, T. N. and Paris, P. J. 1992 Cross-field diffusion quenching by neutral gas injection in a magnetized plasma. Phys. Rev. Lett. 68, 2925.Google Scholar
Froula, D. H., Glenzer, S. H., Luhmann, N. C. and Sheffield, J. 2011 Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. Oxford: Academic Press.Google Scholar
Geissler, K. H., Greenwald, R. A. and Calvert, W. 1972 Measurement of plasma properties from the cross spectrum of thermal density fluctuations. Phys. Fluids 15, 96103.Google Scholar
Hagelaar, G. J. M. and Pitchford, L. C. 2005 Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722733.Google Scholar
Hutchinson, I. H. 1987 Principles of Plasma Diagnostics. New York: Cambridge University Press.Google Scholar
Khrapak, S.et al. 2012 Grain charging in an intermediately collisional plasma. EPL 97, 35 00135 005.CrossRefGoogle Scholar
Kieft, E. R., van der Mullen, J. J. A. M., Kroesen, G. M. W., Banine, V. and Koshelev, K. N. 2004 Collective Thomson scattering experiments on a tin vapor discharge in the prepinch phase. Phys. Rev. E 70, 056 413.Google Scholar
Klimontovich, Yu. L. 1967 The Statistical Theory of Non-equilibrium Processes in a Plasma. London: Pergamon.Google Scholar
Klimontovich, Yu. L., Wilhelmsson, H., Yakimenko, I. P. and Zagorodny, A. G. 1989 Statistical theory of plasma-molecular systems. Phys. Rep. 175, 263401.CrossRefGoogle Scholar
Mattingly, S. W., Berumen, J., Chu, F., Hood, R. and Skiff, F. 2013 Measurement and interpretation of the velocity space correlation of a laboratory plasma fluctuation with laser induced fluorescence. J. Instrum. 8, C11 015.Google Scholar
McWilliams, R. and Okubo, M. 1987 The transport of test ions in a quiet plasma. Phys. Fluids 30, 2849.Google Scholar
Meyer-Vernet, N. 1979 On natural noises detected by antennas in plasmas. J. Geophys. Res. 84, 53735377.Google Scholar
Meyer-Vernet, N., Hoang, S., Issautier, K., Maksimovic, M., Manning, R., Moncuquet, M. and Stone, R. 1998 Measuring plasma parameters with thermal noise spectroscopy. Geophys. Monogr. 103, 205.Google Scholar
Meyer-Vernet, N. and Perche, C. 1989 Tool kit for antennae and thermal noise near the plasma frequency. J. Geophys. Res. 94, 2405.Google Scholar
Musal, H. M. 1966 An inverse brush cathode for the negative glow plasma source. J. Appl. Phys. 37, 1935.Google Scholar
Persson, K.-B. 1965 Brush cathode plasma-A well-behaved plasma. J. Appl. Phys. 36, 30863094.CrossRefGoogle Scholar
Ramsden, S. A. and Davies, W. E. R. 1966 Observation of cooperative effects in the scattering of a laser beam from a plasma. Phys. Rev. Lett. 16, 303.Google Scholar
Ratynskaia, S., de Angeli, M., de Angelis, U., Marmolino, C., Capobianco, G., Lontano, M., Lazzaro, E., Morfill, G. E. and Gervasini, G. 2007 Observation of the effects of dust particles on plasma fluctuation spectra. Phys. Rev. Lett. 99, 075 002.Google Scholar
Ratynskaia, S.et al. 2010 Plasma fluctuation spectra as a diagnostic tool for submicron dust. Phys. Plasmas 17, 043 703.Google Scholar
Ratynskaia, S., Demidov, V. and Rypdal, K. 2002 Measurements of anomalous particle and energy fluxes in a magnetized plasma. Phys. Rev. E 65, 066 403.Google Scholar
Rothermel, H., Hagl, T., Morfill, G. E., Thoma, M. H. and Thomas, H. M. 2002 Gravity compensation in complex plasmas by application of a temperature gradient. Phys. Rev. Lett. 89, 175 001.Google Scholar
Rynn, N. and D'Angelo, N. 1960 Device for generating a low temperature, highly ionized Cesium plasma. Rev. Sci. Instrum. 31, 1326.Google Scholar
Schmidt, G. 1966 Physics of High Temperature Plasmas. New York: Academic.Google Scholar
Sheffield, J. 1975 Plasma Scattering of Electromagnetic Radiation. London: Academic Press.Google Scholar
Sitenko, A. G. 1967 Electrodynamic Fluctuations in a Plasma. New York: Academic Press.Google Scholar
Thoma, M.et al. 2007 PK-4: complex plasmas in space - the next generation. IEEE Trans. Plasma Sci. 35, 255.CrossRefGoogle Scholar
Tolias, P., Ratynskaia, S. and de Angelis, U. 2012 Spectra of ion density and potential fluctuations in weakly ionized plasmas in the presence of dust grains. Phys. Rev. E 85, 026 408.Google Scholar
Tsytovich, V. N. 1995 Lectures on Nonlinear Plasma Kinetics. Berlin: Springer.Google Scholar
Tsytovich, V. N. and de Angelis, U. 1999 Kinetic theory of dusty plasmas. I. general approach. Phys. Plasmas 6, 1093.Google Scholar
Williams, R. H. and Chappell, W. R. 1971 Microscopic theory of density fluctuations and diffusion in weakly ionized plasmas. Phys. Fluids 14, 591598.Google Scholar