Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T06:33:42.307Z Has data issue: false hasContentIssue false

Avinash–Shukla mass limit for the maximum dust mass supported against gravity by electric fields

Published online by Cambridge University Press:  15 January 2010

K. AVINASH*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India Centre for Space Plasma and Aeronomic Research, University of Albama, Hunstville, AL 35899, USA ([email protected])

Abstract

The existence of a new class of astrophysical objects, where gravity is balanced by the shielded electric fields associated with the electric charge on the dust, is shown. Further, a mass limit MA for the maximum dust mass that can be supported against gravitational collapse by these fields is obtained. If the total mass of the dust in the interstellar cloud MD > MA, the dust collapses, while if MD < MA, stable equilibrium may be achieved. Heuristic arguments are given to show that the physics of the mass limit is similar to the Chandrasekar's mass limit for compact objects and the similarity of these dust configurations with neutron and white dwarfs is pointed out. The effect of grain size distribution on the mass limit and strong correlation effects in the core of such objects is discussed. Possible location of these dust configurations inside interstellar clouds is pointed out.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hartmann, W. 1983 Moons and Planets. California: Wadsworth.Google Scholar
[2]Harpaz, A. 1994 Stellar Evolution. Wellesley, MA: A. K. Peters.Google Scholar
[3]Fischer, D. and Duerbeck, H. 1998 Hubble Revisted. New York: Springer Verlag.CrossRefGoogle Scholar
[4]Spitzer, L. 1968 Diffuse Matter in Space. New York: Interscience Publisher.Google Scholar
[5]Hoyle, F. and Wikcramsinghe, N. C. 1991 Theory of Cosmic Grains. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
[6]Avinash, K. 2006 Phys. Plasmas. 13, 012109.CrossRefGoogle Scholar
[7]Goertz, C. K., Shan, L. and Havnes, O. 1987 Geophys. Res. Lett. 15, 84; Melandso, J. and Havnes, O. 1991 J. Geophys. Res. 95, 5837.CrossRefGoogle Scholar
[8]Avinash, K. and Shukla, P. K. 2000 Phys. Plasmas. 7 (10), 2763.CrossRefGoogle Scholar
[9]Avinash, K. and Shukla, P. K. 2006 New J. Phys. 8, 2.CrossRefGoogle Scholar
[10]Avinash, K., Eliasson, B. and Shukla, P. K. 2006 Phys. Lett. A 353, 105.CrossRefGoogle Scholar
[11]Avinash, K. 2007 Phys. Plasmas. 14, 012904.CrossRefGoogle Scholar
[12]Avinash, K. 2007 Phys. Plasmas. 14, 093701.CrossRefGoogle Scholar
[13]Whipple, E. C., Northrop, T. G. and Mendis, A. 1985 J. Geophys. Res. 96, 7405.CrossRefGoogle Scholar
[14]Havnes, O., Goertz, C. K., Morfill, G. E. et al. 1987 J. Geophys. Res. 92, 2281.CrossRefGoogle Scholar
[15]Avinash, K., Bhattacharjee, A. and Merlino, R. 2003 Phys. Plasmas. 10, 2663.CrossRefGoogle Scholar
[16]Chandrasekar, S. 1957 An Introduction to the Study of Stellar Structure. Chicago: University of Chicago Press.Google Scholar
[17]Shapiro, L. and Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. New York: John Wiley & Sons.CrossRefGoogle Scholar
[18]Oppenheimar, J. R. and Serber, R. 1938 Phys. Rev. 54, 540.CrossRefGoogle Scholar
[19]Shukla, P. K. and Mamun, A. A. 2002 An Introduction to Dusty Plasma Physics. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar
[20]Havnes, O., Aanesen, T. K. and Melandso, F. 1990 J. Geophys. Res. 95, 6581.CrossRefGoogle Scholar
[21]Barkan, A., D'Angelo, N. and Merlino, R. L. 1994 Phys. Rev. Lett. 73, 3093.CrossRefGoogle Scholar
[22]Young, B., Cravens, T. E., Armstrong, T. P. et al. 1994 J. Geophys. Res. 99, 2255.CrossRefGoogle Scholar
[23]Baym, G., Pethick, C. and Sutherland, P. 1971 Astrophys. J. 170, 299.CrossRefGoogle Scholar
[24]Hamada, T. and Salpeter, E. E. 1961 Astrophys. J. 134, 683.CrossRefGoogle Scholar
[25]Krugel, E. 2003 The Physics of Interstellar Dust. Philadelphia, PA: IOP.CrossRefGoogle Scholar
[26]Methis, J. S., Rumpl, W. and Nordsieck, K. N. 1977 Ap. J. 227, 425.CrossRefGoogle Scholar
[27]Burns, J. A., Showalter, M. R. and Morfill, G. M. 1984 Planetary Rings (ed. Greenberg, R. and Brahic, A.). Tucson: University of Arizona Press.Google Scholar
[28]Mcdonnell, J. A. et al. 1987 Astron. Astrophys. 187, 719.Google Scholar