Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T03:21:46.716Z Has data issue: false hasContentIssue false

Application of the collective approach to the thermodynamics of an electron gas

Published online by Cambridge University Press:  13 March 2009

Lawrence J. Caroff
Affiliation:
Space Sciences Division, Ames Research Center, NASA Moffett Field, California 94035
Richard L. Liboff
Affiliation:
Department of Applied Physics and Electrical Engineering, Cornell University, Ithaca, New York 14850

Abstract

The collective approach of Pines & Bohm has been applied to the problem of the thermodynamics of the N-particle electron gas including transverse radiation. Partitioning of the internal energy and certain of the other thermodynamic quantities is discussed generally. The system is seen to divide itself into three approximately independent subsystems: (1) an infinite set of free harmonic oscillators, corresponding to the transverse field, with an energy spectrum given by ωT(κ), where ωT(κ), is given by the dispersion relation for transverse electromagnetic waves in a plasma; (2) a set of 8 free harmonic oscillators corresponding to the longitudinal (plasma) oscillations, with an energy spectrum ωT(κ), given by the dispersion relation for plasma oscillations; and (3) a set of (N — 2s/3) quasi-particles of mass approximately equal to the electron mass, interacting via a short-range potential which is essentially screened Coulomb. Analytical expressions for the energy, pressure, and constant-volume specific heat of the transverse oscillators are given, together with approximate expressions applicable to the high-density—low-temperature and low-density—high-temperature limits. Detailed numerical calculations of the internal energy and pressure of the longitudinal modes are presented. In addition, the contributions to the energy and pressure from the particle portion are evaluated in the low-density—high-temperature limit as functions of the cut-off wave vector κc; κc is the maximum k-vector of the longitudinal oscillators.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, R. 1959 a Progr. Theor. Phys. (Kyoto) 21, 475.Google Scholar
Abe, R. 1959 b Progr. Theor. Phys. (Kyoto) 22, 213.Google Scholar
Balescu, R. 1963 Statistical Mechanics of Charged Particles. New York: Interscience.Google Scholar
Birmingham, T., Dawson, J. & Oberman, C. 1965 Phys. Fluids 8, 297.Google Scholar
Bogoliubov, N. N. 1962 Studies in Statistical Mechanics, vol. 1. Amsterdam: North- Holland.Google Scholar
Bohm, D. 1959 The Many Body Problem. New York: John Wiley.Google Scholar
Bohm, D. & Gross, E. 1949 Phys. Rev. 75, 1851, 1864.Google Scholar
Brush, S., Dewitt, H. & Trulio, J. 1963 Nuclear Fusion 3, 5.Google Scholar
Debye, P. & Hückle, R. 1923 Physik. 24, 185.Google Scholar
Delcroix, J. L. 1965 Plasma Physics. New York: John Wiley.Google Scholar
Dirac, P. A. M. 1935 Principles of Quantum Mechanics. London: Oxford University Press.Google Scholar
Ferrell, R. 1957 Bull. Am. Phys. Soc. Ser. II 2, 146.Google Scholar
Fried, B. & Conte, C. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Friedman, H. L. 1959 Molecular Phys. 2, 23, 190, 436.Google Scholar
Friedman, H. L. 1960 J. Chem. Phys. 32, 1134, 1351.Google Scholar
Gabor, D. 1952 Proc. Roy. Soc. Lond. A 213, 73.Google Scholar
Gell-Mann, M. & Brueckner, K. 1957 Phys. Rev. 106, 364.Google Scholar
Glauberman, A. 1951 Doklady Akad. Nauk S.S.S.R. 78, 883 (UCRL Trans. 666 (L)).Google Scholar
Glauberman, A. & Yukhnovslii, I. 1954 Zh. Eksper. Teor. Fiz. 22, 562, 572 (UCRL Trans. 667 (L)).Google Scholar
Gradshteyn, I. & Ryzhik, I. 1965 Table of Integrals—Series and Products. New York: Academic Press.Google Scholar
Haga, E. 1953 J. Phys. Soc. Japan 8, 714.Google Scholar
Huang, K. 1963 Statistical Mechanics. New York: John Wiley.Google Scholar
Jackson, J. 1960 Nucl. Energy, Part C; Plasma Physics 1, 171.Google Scholar
Kelbg, G. 1962 Ann. Physik. 9, 158.Google Scholar
Landau, L. & Lifshitz, E. 1958 Statistical Physics. Reading, Mass.: Addison-Wesley.Google Scholar
Lie, L. & Ichikawa, Y. 1966 Rev. Mod. Phys. 38, 680.Google Scholar
Louisell, W. 1964 Radiation and Noise in Quantum Electronics. New York: McGraw-Hill.Google Scholar
Mayer, J. E. 1950 J. Chem. Phys. 18, 1426.Google Scholar
Meeron, E. 1957 J. Chem. Phys. 26, 804.Google Scholar
Meeron, E. 1958 J. Chem. Phys. 28, 630.Google Scholar
Milner, S. R. 1912 Phil. Mag. 23, 551.Google Scholar
Milner, S. R. 1913 Phil Mag. 25, 742.Google Scholar
Milner, S. R. 1918 Phil. Mag. 35, 214.Google Scholar
Milner, S. R. 1919 Phil. Mag. 15, 148.Google Scholar
Montgomery, D. & Tidman, O. 1964 Plasma Kinetic Theory. New York: McGraw-Hill.Google Scholar
Nozieres, P. & Pines, P. 1958 a Phys. Rev. 111, 442.Google Scholar
Nozieres, P. & Pines, D. 1958b Il Nuovo Cimento, X9, 470.Google Scholar
Pines, D. 1961 J. Nucl. Energy, Part C; Plasma Physics 2, 5.Google Scholar
Pines, D. & Bohm, D. 1951 Phys. Rev. 82, 625.Google Scholar
Pines, D. & Bohm, D. 1952 Phys. Rev. 85, 338.Google Scholar
Pines, D. & Bohm, D. 1953 a Phys. Rev. 92, 609.Google Scholar
Pines, D. & Bohm, D. 1953 b Phys. Rev. 92, 626.Google Scholar
Pines, D. & Schrieffer, J. 1962 Phys. Rev. 125, 804.Google Scholar
Rostoker, N. & Rosenblutr, M. 1960 Phys. Fluids 3, 1.Google Scholar
Sawada, K., Brueckner, K., Fuküda, N. & Brout, R. 1957 Phys. Rev. 108, 507.Google Scholar
Schwarzschild, M. 1958 Structure and Evolution of the Stars. Princeton, N.J.: Princeton University Press.Google Scholar
Simon, A. 1965 Plasma Physics. Vienna: Int. Atomic Energy Agency.Google Scholar
Tonks, L. & Langmutr, I. 1929 Phys. Rev. 33, 195.Google Scholar
Watson, G. 1958 A Treatise on Bessel Functions. London: Cambridge University Press.Google Scholar
Yukhnovskii, I. 1954 Zh. Eksper. Teor. Fiz. 27, 690. UCRL Trans. 669 (L).Google Scholar
Yukhnovskii, I. 1958 Zh. Eksper. Teor. Fiz. 34, 379; Soviet Phys. JETP, 7, 263.Google Scholar
Yukhnovskii, I. 1961 Doklady Akad. Nauk. S.S.S.R. 136, 1317. Soviet Phys. Doklady 6, 150.Google Scholar
Ziman, J. 1962 Electrons and Phonons. Oxford: Clarendon Press.Google Scholar