Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T00:48:36.406Z Has data issue: false hasContentIssue false

Application of multipole moments and magnetic techniques for determination of tokamak plasma shift

Published online by Cambridge University Press:  13 December 2013

A. Salar Elahi*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Email address for correspondence: [email protected]

Abstract

In this contribution, we presented approaches for the determination of tokamak plasma column shift based on multipole moments and magnetic techniques. First, we presented analytical details for using this technique. Then, the principle of different models based on this technique for the design and fabrication of six coils will be presented: four modified Rogowski coils (two cosine coils and two sine coils) and two saddle coils (saddle sine coil and saddle cosine coil). Also, to compare the results, the flux loops technique is used. Because of continuous measurements of magnetic field distribution around the tokamak plasma using multipole coils, this technique gives us more reliable information about the plasma current displacement. Moreover, we deduced the plasma current and plasma boundary centers shift using the two semi-empirical techniques in the IR-T1 tokamak. First, the plasma current center is calculated from the vertical field coil characteristics. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of the plasma column. Also, the plasma boundary center shift was measured from the external magnetic coils. The results from these two techniques are compared and discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghanbari, M. R., Ghoranneviss, M. and Salar Elahi, A. 2011a Phys. Scripta 83, 055501; Phys. Scripta 85(5), 055502, (2012).CrossRefGoogle Scholar
Ghanbari, M. R., Ghoranneviss, M., Salar Elahi, A., Arvin, R. and Mohammadi, S. 2011b Radiat. Eff. Defects Solids 166 (10), 789794.Google Scholar
Ghoranneviss, M. and Salar Elahi, A. 2010 Phys. Scripta 82 (3), 035502; J. Fusion Energy 29(5), 467–470, (2010).Google Scholar
Goodarzi, Z., Ghoranneviss, M. and Salar Elahi, A. 2013 J. Fusion Energy 32 (1), 103106.Google Scholar
Lee, G. S. and Ghoranneviss, M. 2001 Nucl. Fusion 41, 1515.CrossRefGoogle Scholar
Mikaili Agah, K., Ghoranneviss, M. and Salar Elahi, A. 2013 J. Fusion Energy 32 (2), 268272.Google Scholar
Mukhovatov, V. S. and Shafranov, V. D. 1971 Nucl. Fusion 11, 605.CrossRefGoogle Scholar
Nakamura, K. and Ghoranneviss, M. 2003 Fusion Eng. Des. 66–68, 771777.Google Scholar
Rahimi Rad, A., Emami, M., Ghoranneviss, M., Salar Elahi, A. 2010 J. Fusion Energy 29 (1), 7375.Google Scholar
Rahimi Rad, A., Ghoranneviss, M., Emami, M. and Salar Elahi, A. 2009 J. Fusion Energy 28 (4), 420426.Google Scholar
Salar Elahi, A. 2011 J. Fusion Energy 30 (6), 477480.Google Scholar
Salar Elahi, A. and Ghoranneviss, M. 2010a IEEE Trans. Plasma Sci. 38 (9), 31633167.Google Scholar
Salar Elahi, A. and Ghoranneviss, M. 2010b IEEE Trans. Plasma Science 38 (2), 181185; J. Plasma Phys. 76(1), 1–8, (2009); Fusion Eng. Des. 85, 724–727, (2010); Phys. Scripta 80, 045501, (2009); Phys. Scripta 80, 055502, (2009); Phys. Scripta 81(5), 055501, (2010); Phys. Scripta 82, 025502, (2010); J. Fusion Energy 28(4), 346–349, (2009); J. Fusion Energy 28(4), 416–419, (2009); J. Fusion Energy 28(4), 408–411, (2009); J. Fusion Energy 28(4), 412–415, (2009); J. Fusion Energy 28(4), 394–397, (2009); J. Fusion Energy 28(4), 404–407, (2009); J. Fusion Energy 28(4), 390–393, (2009); J. Fusion Energy 28(4), 385–389, (2009); J. Fusion Energy 29(1), 1–4, (2010); J. Fusion Energy 29(1), 22–25, (2010); J. Fusion Energy 29(1), 29–31, (2010); J. Fusion Energy 29(1), 26–28, (2010); J. Fusion Energy 29(1), 32–35, (2010); J. Fusion Energy 29(1), 36–40, (2010); J. Fusion Energy 29(1), 62–64, (2010).Google Scholar
Salar Elahi, A. and Ghoranneviss, M. 2010c J. Fusion Energy 29 (1), 7682; J. Fusion Energy 29(1), 83–87, (2010); J. Fusion Energy 29(1), 88–93, (2010); J. Fusion Energy 29(3), 209–214, (2010); J. Fusion Energy 29(3), 232–236, (2010); J. Fusion Energy 29(3), 251–255, (2010); J. Fusion Energy 29(3), 279–284, (2010); J. Fusion Energy 29(5), 461–465, (2010); Braz. J. Phys. 40(3), 323–326, (2010); J. Fusion Energy 30(2), 116–120, (2011); Fusion Eng. Des. 86, 442–445, (2011); J. Fusion Energy 31(2), 191–194, (2012); IEEE Trans. Plasma Sci. 40(3), 892–897, (2012); Radiat. Eff. Defects Solids 168(1), 42–47, (2013); Fusion Eng. Des. 88(2), 94–99, (2013); IEEE Trans. Plasma Sci. 41(2), 334–340, (2013); J. Fusion Energy 32, 496–502, (2013); Rev. Sci. Instrum. 84(5), 053504 (2013); J. Nucl. Part. Phys. 1(1), 10–15, (2011); J. Nucl. Part. Phys. 2(2), 1–5, (2012); J. Nucl. Part. Phys. 2(2), 22–25, (2012); J. Nucl. Part. Phys. 2(4), 91–97, (2012); J. Nucl. Part. Phys. 2(4), 101–106, (2012); J. Nucl. Part. Phys. 2(5), 112–118, (2012); J. Nucl. Part. Phys. 2(6), 142–146, (2012); J. Nucl. Part. Phys. 3(1), 1–7, (2013); J. Nucl. Part. Phys. 3(1), 14–19, (2013).Google Scholar
Seo, S. H. 2009 Phys. Plasmas 16, 032501.Google Scholar
Shkarofsky, I. P. 1982 Phys. Fluids 25 (1)8996.Google Scholar