Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T01:38:17.706Z Has data issue: false hasContentIssue false

Anomalous high-frequency conductivity of a turbulent plasma

Published online by Cambridge University Press:  13 March 2009

B. Bertotti
Affiliation:
Laboratorio Gas lonizzati, Euratom-CNEN (Frascati) Istituto di Fisica, Università di Messina, Messina
O. De Barbieri
Affiliation:
Istituto di Scienze Fisiche, Università di Milano, Milano, Gruppo Nazionale di Elettronica Quantistica e Plasmi del C.N.R., Sezione di Milano

Abstract

In this work we evaluate the anomalous high-frequency conductivity arising from particle—wave interactions in a multi-species turbulent plasma with no external magnetic field. The calculation is made by using the full three-dimensional model of the quasi-linear theory of plasma turbulence for a wide range of frequencies embracing the electron plasma frequency. It is found that the conductivity tensor is anisotropic and slowly time dependent; this reflects the slow time dependence and the anisotropic character of the distribution functions of the velocities of the particles. It is also found that there is a very narrow range of frequencies (just above the electron plasma frequency) for which the components of the conductivity tensor are negative. The particular case of the two- stream instability is examined in detail. The anisotropic character of the components of the conductivity tensor and their dependence on the frequency of the external field is studied. Finally some possible means for an experimental check of our calculations are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M. & Silin, V. P. 1965 Soviet Phys. JETP 21, 601.Google Scholar
Aliev, Yu. M., Silin, V. P. & Watson, H. 1966 Soviet Phys. JETP 23, 628.Google Scholar
Bernstein, I. B. & Engelmann, F. 1966 Phys. Fluids 9, 937.CrossRefGoogle Scholar
Drummond, W. E. & Pines, D. 1962 Nucl. Fusion Suppl. Pt 3, p. 478.Google Scholar
Drummond, W. E. & Pines, D. 1964 Ann. Phys. (N.Y.) 28, 478.CrossRefGoogle Scholar
Frieman, E. A. & Rutherford, P. 1964 Ann. Phys. (N.Y.) 28, 134.CrossRefGoogle Scholar
Gorbunov, L. M. & Silin, V. P. 1966 Soviet Phys. JETP 22, 1347.Google Scholar
Kharchenko, I. F., Fainberg, YA. B., Nikolaev, R. M., Kornilov, E. A., Lutsenko, E. I. & Pedenko, N. S. 1962 Soviet Phys. Techn. Phys. 6, 551.Google Scholar
Klimontovich, Yu. L. 1958 Soviet Phys. JETP 6, 753.Google Scholar
Klimontovich, Yu. L. 1960 a Soviet Phys. JETP 10, 524.Google Scholar
Klimontovich, Yu. L. 1960 b Soviet Phys. JETP 11, 876.Google Scholar
Oberman, C., Rona, A. & Dawson, J. 1962 Phys. Fluids 5, 1514.CrossRefGoogle Scholar
Rostoker, N. 1961 Nucl. Fusion 1, 101.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. In Reviews of Plasma Physics, vol. IV. Ed. by Leontovich, M. A.. New York: Consultants Bureau.Google Scholar
Shapiro, V. D. 1962 Soviet Phys. Tech. Phys. 6, 376.Google Scholar
Stlin, V. P. 1965 a Soviet Phys. JETP 20, 1510.Google Scholar
Stlin, V. P. 1965 b Soviet Phys. JETP 21, 1127.Google Scholar
Stlin, V. P. 1967 Soviet Phys. JETP 24, 1242.Google Scholar
Suprunenko, V. A., Sukitmolin, E. A., Volkov, E. D. & Rudnev, N. I. 1962 Soviet Phys. Tech. Phys. 6, 771.Google Scholar
Tsytovich, V. N. 1966 Soviet Phys. Uspekhi 9, 370.CrossRefGoogle Scholar
Vedenov, A. A., Velikhow, E. P. & Sagdeev, R. Z. 1961 Nucl. Fusion 1, 82.CrossRefGoogle Scholar
Vedenov, A. A., Veljkhov, E. P. & Saodeev, R. Z. 1962 Nucl. Fusion Suppl. Pt 2, p. 465.Google Scholar
Vedenov, A. A. 1963 J. Nuclear Energy, Part C, 5, 169.CrossRefGoogle Scholar
Wu, C. S. 1965 Phys. Rev. 138, A 51.CrossRefGoogle Scholar
Yoshikawa, S. 1962 Phys. Fliids 5, 1272.CrossRefGoogle Scholar