Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:52:03.807Z Has data issue: false hasContentIssue false

Anisotropy in MHD turbulence due to a mean magnetic field

Published online by Cambridge University Press:  13 March 2009

John V. Shebalin
Affiliation:
Westinghouse Electric Corporation, Oceanic Division, Annapolis, Maryland 21404
William H. Matthaeus
Affiliation:
NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
David Montgomery
Affiliation:
University of Maryland, College Park, Maryland 20742

Abstract

The development of anisotropy in an initially isotropie spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops through the combined effects of an externally imposed d.c. magnetic field and viscous and resistive dissipation at high wavenumbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wavenumbers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.CrossRefGoogle Scholar
Fyfe, D., Joyce, G. & Montgomery, D. 1977a J. Plasma Phys. 17, 317.CrossRefGoogle Scholar
Fyfe, D., Montgomery, D. & Joyce, G. 1977b J. Plasma Phys. 17, 369.CrossRefGoogle Scholar
Holloway, G. 1977 J. Fluid Mech. 82, 747.CrossRefGoogle Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Rept. Prog. Phys. 43, 547.CrossRefGoogle Scholar
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Oxford University Press.Google Scholar
Matthaeus, W. H. & Montgomery, D. 1980 Ann. N.Y. Acad. Sci. 357, 203.CrossRefGoogle Scholar
Matthaeus, W. H. & Montgomery, D. 1981 J. Plasma Phys. 25, 11.CrossRefGoogle Scholar
Montgomery, D. 1982 Physica Scripta, T2 83.CrossRefGoogle Scholar
Orszag, S. A. 1971 Stud. Appi. Math. 50, 293.CrossRefGoogle Scholar
Orszag, S. A. & Tang, C.-M. 1979 J. Fluid Mech. 90, 129.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, S. A. 1971 Phys. Fluids, 14, 2538.CrossRefGoogle Scholar
Pouquet, A. 1978 J. Fluid Mech. 88, 1.CrossRefGoogle Scholar
Robinson, D. C., Rusbridge, M. G. & Saunders, P. A. H. 1968 Plasma Phys. 10, 1005.CrossRefGoogle Scholar
Robinson, D. C. & Rusbridge, M. G. 1971 Phys. Fluids, 14, 2499.CrossRefGoogle Scholar
Rusbridge, M. G. 1969 Plasma Phys. 11, 35.CrossRefGoogle Scholar
Shebalin, J. V. 1982 Ph.D. Thesis, College of William and Mary.Google Scholar
Strauss, H. R. 1976 Phys. Fluids, 19, 134.CrossRefGoogle Scholar
Zweben, S. J., Menyuk, C. P. & Taylor, R. J. 1979 Phys. Rev. Lett. 42, 1270.CrossRefGoogle Scholar
Zweben, S. J. & Taylor, R. J. 1981 Nucl. Fusion, 21, 193.CrossRefGoogle Scholar