Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:36:55.616Z Has data issue: false hasContentIssue false

Anisotropies in a charged particle beam

Published online by Cambridge University Press:  16 December 2009

WILSON SIMEONI JR*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brazil ([email protected])

Abstract

This paper examines the anisotropies of a charged particle beam moving into a linear focusing channel. Considering a high-intensity ion beam in space-charge-dominated regime and large mismatched root mean square (RMS) initial beam size, a fast increase in spatial beam anisotropy is observed. Calculations presented here are strong evidence that this anisotropy is responsible for the beam's equipartition. It is shown that particle–particle resonances and wave-particle resonances lead to anisotropization of the beam, i.e. both the envelope and emittance ratios different from unity. It indicates that this anisotropy is responsible for the beam's equipartitioning and suggest that the beam remains equipartitioned even when exhibiting a macroscopic anisotropy, which is characterized by the following properties: the development of an elliptical shape with increasing size along one axis, the presence of a coupling between transversal emittances and halo formation along a preferential direction.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Lagniel, J. 1994 Nucl. Instrum. Methods Phys. Res. Sect. A 345, 46.CrossRefGoogle Scholar
[2]Lagniel, J. 1994 Nucl. Instrum. Methods Phys. Res. Sect. A 345, 405.CrossRefGoogle Scholar
[3]Gluckstern, R. L. 1994 Phys. Rev. Lett. 73, 1247.CrossRefGoogle Scholar
[4]Jameson, R. 1998 PAC93 Proc. IEEE, 3926.Google Scholar
[5]Wangler, T. P., Crandall, K. P., Ryne, R. and Wang, T. S. 1998 Phys. Rev. ST Accel. Beams 1, 084201.CrossRefGoogle Scholar
[6]Gluckstern, R. L., Cheng, W. H. and Ye, H. 1995 Phys. Rev. Lett. 75, 2835.CrossRefGoogle Scholar
[7]Gluckstern, R. L., Cheng, W. H., Kurennoy, S. and Ye, H. 1996 Phys. Rev. E 54, 6788.Google Scholar
[8]Qian, Q. and Davidson, R. C. 1996 Phys. Rev. E 53, 5349.Google Scholar
[9]Okamoto, H. and Ikegami, M. 1997 Phys. Rev. E 55, 4694.CrossRefGoogle Scholar
[10]Ikegami, M. 1999 Phys. Rev. E 59, 2330.Google Scholar
[11]Fedotov, A. V., Hofmann, I., Gluckstern, R. L. and Okamoto, H. 2003 Phys. Rev. ST Accel. Beams 6, 094201.CrossRefGoogle Scholar
[12]Montague, B. W. 1968 CERN-Report No. 68–38, CERN.Google Scholar
[13]Hofmann, I. 1998 Phys. Rev. E. 57, 4713.Google Scholar
[14]Fedotov, A. V. 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 557, 216.CrossRefGoogle Scholar
[15]Ikegami, M. 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 435, 284.CrossRefGoogle Scholar
[16]Hofmann, I., Qiang, J. and Ryne, R. 2001 Phys. Rev. Lett. 86, 2313, Hofmann, I. and Boine-Frankenheim, O. 2001 Phys. Rev. Lett. 87, 034802, Franchetti, G., Hofmann, I. and Jeon, D. 2002 Phys. Rev. Lett. 88, 254802.CrossRefGoogle Scholar
[17]Kishek, R. A., O'Shea, P. G. and Reiser, M. 2000 Phys. Rev. Lett. 85, 4514.CrossRefGoogle Scholar
[18]Simeoni, W. Jr, Rizzato, F. B. and Pakter, R. 2006 Phys. Plasmas 13, 063104.CrossRefGoogle Scholar
[19]Lapostolle, P. M. 1971 IEEE Trans. Nucl. Sci. NS-18, 1101.CrossRefGoogle Scholar
[20]Sacherer, F. J., 1971 IEEE Trans. Nucl. Sci. NS-18, 1105.CrossRefGoogle Scholar
[21]Lapostolle, P. M. 1965 CERN AR/Int. SG/65–27.CrossRefGoogle Scholar
[22]Davidson, R. C. and Qin, H. 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators 257299. Singapore: World Scientific.CrossRefGoogle Scholar
[23]Lapostolle, P. M., Lombardi, A. and Wangler, T. P. 1993 CERN/PS 93–11 (HI).Google Scholar
[24]Neri, F. and Rangarajan, G. 1990 Phys. Rev. Lett. 64, 1073.CrossRefGoogle Scholar
[25]Dragt, A., Neri, F. and Rangarajan, G. 1992 Phys. Rev. A 45, 2572.CrossRefGoogle Scholar
[26]Simeoni, W. Jr, 2009 arXiv:0904.3089v1.Google Scholar
[27]Piovella, N., Bourdier, A., Chaix, P. and Iracane, D. 1994 EPAC94 Proc., 1186.Google Scholar
[28]Wangler, T. P., Guy, F. W. and Hofmann, I. 1986 LINAC86 Proc., 340.Google Scholar
[29]Frigo, M. and Johnson, S. G. 2005 Proc. IEEE 93 (2), 216231.CrossRefGoogle Scholar
[30]Hofmann, I., Franchetti, G., Qiang, J. and Ryne, R. D. 2004 EPAC04 Proc., 1960.Google Scholar
[31]Ohnuma, S. and Gluckstern, R. L. 1985 IEEE Trans. Nucl. Sci. 32, 2261.CrossRefGoogle Scholar
[32]Lagniel, J. M. and Nath, S. 1998 EPAC98 Proc., 1118.Google Scholar
[33]Franchetti, G., Hofmann, I. and Aslaninejad, M. 2005 Phys. Rev. Lett. 94, 194801.CrossRefGoogle Scholar
[34]Hofmann, I., Franchetti, G. and Boine-Frankenheim, O. 2003 Phys. Rev. ST Accel. Beams 6, 024202.CrossRefGoogle Scholar
[35]Aslaninejad, M. and Hofmann, I. 2003 Phys. Rev. ST Accel. Beams 6, 124202.CrossRefGoogle Scholar
[36]Hofmann, I. 1997 PAC97 Proc., IEEE, 1852.Google Scholar
[37]Jameson, R. A. 1981 IEEE Trans. Nucl. Sci. 28, 2408.CrossRefGoogle Scholar
[38]Young, L. M. 1997 PAC97 Proc., 1920.Google Scholar
[39]Startsev, E. A., Davidson, R. C. and Qin, H. 2005 Phys. Rev. ST Accel. Beams 8, 124201.CrossRefGoogle Scholar
[40]Hofmann, I. 1981 IEEE Trans. Nucl. Sci. 28, 2399.CrossRefGoogle Scholar
[41]Hofmann, I. and G. Franchetti, G. 2006 Phys. Rev. ST Accel. Beams 9, 054202.CrossRefGoogle Scholar
[42]Kandrup, H. E, Vass, I. M. and Sideris, I. V. 2003 Mon. Not. R. Astron. Soc. 341, 927.CrossRefGoogle Scholar
[43]Bohn, C. L. and Sideris, I. V. 2003 Phys. Rev. ST Accel. Beams 6, 034203.CrossRefGoogle Scholar
[44]Vacaru, S. I. 2001 Ann. Physics 290, 83.CrossRefGoogle Scholar