Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T08:27:20.110Z Has data issue: false hasContentIssue false

Analytical studies of PROTO-SPHERA equilibria

Published online by Cambridge University Press:  26 November 2020

P. Buratti*
Affiliation:
Fusion and Nuclear Safety Department, ENEA, C.R. Frascati, Via E. Fermi 45, 00044Frascati (Roma), Italy
B. Tirozzi
Affiliation:
Department of Physics, University La Sapienza of Rome, 00185Roma, Italy
F. Alladio
Affiliation:
Fusion and Nuclear Safety Department, ENEA, C.R. Frascati, Via E. Fermi 45, 00044Frascati (Roma), Italy
P. Micozzi
Affiliation:
Fusion and Nuclear Safety Department, ENEA, C.R. Frascati, Via E. Fermi 45, 00044Frascati (Roma), Italy
*
Email address for correspondence: [email protected]

Abstract

Analytical solutions of the Grad–Shafranov equilibrium equation in simply connected plasma configurations, comprised of toroidal magnetic surfaces and open surfaces connected to electrodes, are reviewed and generalised. The Grad–Shafranov equation is linearised introducing assumptions on plasma current and pressure, which preserve regularity of solutions on the symmetry axis, as required for a simply connected geometry. Particular solutions are found by separation of variables both in cylindrical coordinates and in spherical ones. Equilibria that model local or global features of PROTO-SPHERA plasmas are constructed by combining a few particular solutions.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alladio, F., Costa, P., Mancuso, A., Micozzi, P., Papastergiou, S. & Rogier, F. 2006 Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH). Nucl. Fusion 46, S613S624.CrossRefGoogle Scholar
Chandrasekhar, S. 1956 On force-free magnetic fields. Proc. Natl Acad. Sci. USA 42, 1.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. & Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 41, 457.CrossRefGoogle Scholar
Furth, H. P., Levine, M. A. & Wantek, R. W. 1957 Production and use of high transient magnetic fields. II. Rev. Sci. Instrum. 28, 949.CrossRefGoogle Scholar
Guazzotto, L. & Freidberg, J. P. 2007 A family of analytic equilibrium solutions for the Grad–Shafranov equation. Phys. Plasmas 14, 112508.CrossRefGoogle Scholar
Hazeltine, R. D. & Meiss, J. D. 1992 Plasma Confinement. Addison-Wesley.Google Scholar
Jensen, T. H. & Chu, M. S. 1981 The bumpy Z-pinch. J. Plasma Phys. 25, 459.CrossRefGoogle Scholar
Lampasi, A., Maffia, G., Alladio, F., Boncagni, L., Causa, F., Giovannozzi, E., Grosso, L. A., Mancuso, A., Micozzi, P., Piergotti, V., et al. 2016 Progress of the plasma centerpost for the PROTO-SPHERA spherical tokamak. Energies 9, 508.CrossRefGoogle Scholar
Lovelace, R. V. E., Mehanian, C., Mobarry, C. M. & Sulkanen, M. E. 1986 Theory of axisymmetric magnetohydrodynamic flows: disks. Astrophys. J. Suppl. 62, 1.CrossRefGoogle Scholar
Rogier, F., Bracco, G., Mancuso, A., Micozzi, P. & Alladio, F. 2003 Simply connected high-$\beta$ magnetic configurations. AIP Conf. Proc. 669, 557.CrossRefGoogle Scholar
Solov'ev, L. S. 1968 The theory of hydromagnetic stability of toroidal plasma configurations. Sov. Phys. JETP 26, 400.Google Scholar
Taylor, J. B. & Turner, M. F. 1989 Plasma current drive by helicity injection in relaxed states. Nucl. Fusion 29, 219.CrossRefGoogle Scholar
White, R. L. & Hazeltine, R. D. 2009 Symmetry analysis of the Grad–Shafranov equation. Phys. Plasmas 16, 123101.CrossRefGoogle Scholar
Xu, T. & Fitzpatrick, R. 2019 Vacuum solution for Solov'ev's equilibrium configuration in tokamaks. Nucl. Fusion 59, 064002.CrossRefGoogle Scholar