Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T19:54:27.514Z Has data issue: false hasContentIssue false

Analytical solution of the Grad Shafranov equation in an elliptical prolate geometry

Published online by Cambridge University Press:  05 April 2019

F. Crisanti*
Affiliation:
ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati (Rome), Italy
*
Email address for correspondence: [email protected]

Abstract

The analytical solution in toroidal coordinates of the Grad Shafranov equation has been at the origin of the tokamak breakthrough in the fusion development. Unfortunately, the standard toroidal coordinates have a circular poloidal section, which does not fit the elongated cross-section of the present tokamak experiments. In axisymmetry, the vacuum Grad Shafranov equation coincides with the Laplace equation for the toroidal component of the vector potential. In the present paper the solutions for the Laplace equation and that for the vacuum Grad Shafranov equation are tackled in the elliptical prolate toroidal cap-cyclide coordinates framework. The following report of the geometrical properties and of the metric of these coordinates allows us to work out the analytical solution of both equations in terms of the Wangerin functions.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AikawaI, K. & Takahara, M.1975.Wangerin Functions. Yamanashi Univ., Rep. Facul. of Engineering 26.Google Scholar
Albanese, R., Ambrosino, G., Ariola, M., Artaserse, G., Bellizio, T., Coccorese, V. et al. 2011 Overview of modelling activities for plasma control upgrade in JET. Fus. Engin. Des. 86, 1030.Google Scholar
Albanese, R., Ambrosino, G., Ariola, M., Cavinato, M., De Tommasi, G., Liu, Y. et al. 2009 ITER vertical stabilization system. Fus. Engin. Des. 84, 394.Google Scholar
Albanese, R., Ambrosino, R. & Mattei, M. 2015 CREATE-NL $+$ : a robust control-oriented free boundary dynamic plasma equilibrium solver. Fus. Engin. Des. 96–97, 664.Google Scholar
Albanese, R., Blum, J. & De Barbieri, O.1987. Num. Stud. of the Next Europ. Torus via PROTEUS code. 12th Confer. Numeric. Simulat. of Plasmas, San Francisco.Google Scholar
Albanese, R. & Villone, F. 1998 The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks. Nucl. Fusion 38, 723.Google Scholar
Alladio, F. & Crisanti, F. 1986 Analysis of mhd equilibria by toroidal multipolar expansions. Nucl. Fusion 26, 1143.Google Scholar
Alladio, F., Crisanti, F., Lazzaro, E. & Tanga, A.1984. Observation high $\unicode[STIX]{x1D6FD}p$ effect in JET discharge. In 26th Bull. Am. Phys. Soc., Boston, (p. 3 F11).Google Scholar
Alladio, F., Crisanti, F., Marinucci, M., Micozzi, P. & Tanga, A. 1991 Analysis of tokamak configurations using the toroidal multipole method. Nucl. Fusion 31, 739.Google Scholar
Atanasiu, C. V., Günter, S., Lackner, K. & Miron, I. G. 2004 Analytical solutions to the Grad–Shafranov equation. Phys. Plasmas 11, 3510.Google Scholar
Böcher, M.1894.Üeber Die Reihenentwickelungen Der Potential Theorie. Leipzig. Druck und Verlag von B. G. Teubner.Google Scholar
Bachmann, C., Aiello, G., Albanese, R., Ambrosino, R., Arbeiter, F., Aubert, J. et al. 2015 Initial DEMO tokamak design configuration studies. Fus. Engin. Des. 98–99, 1423.Google Scholar
Bateman, G. 1978 MHD Instabilities. MIT Press.Google Scholar
Blum, J., Le Foll, J. & Thooris, B. 1981 The self-consistent equilibrium and diffusion code SCED. Comput. Phys. Commun. 24, 235.Google Scholar
Boozer, A. 1980 Guiding center drift equations. Phys. Fluids 23, 904.Google Scholar
Brambilla, M. 2003 Iterative solution of the Grad-Shafranov equation in symmetric magnetic coordinates. Phys. Plasmas 10, 3674.Google Scholar
Cenacchi, G., Galvao, R. & Taroni, A. 1976 Numerical computation of axisymmetric mhd-equilibria without conducting shell. Nucl. Fusion 16, 457.Google Scholar
Cerfon, A. J. & Freidberg, J. P. 2010 One size fits all analytic solutions to the Grad–Shafranov equation. Phys. Plasmas 3, 0352502-1.Google Scholar
Chance, M. S. 1997 Vacuum calculations in azimuthally symmetric geometry. Phys. Plasmas 4 (6), 2161.Google Scholar
England, A. C., Bell, R. E., Hirshman, S. P., Kaita, R., Kugel, H. W., LeBlanc, B. L. et al. 1997 Plasma physics and controlled fusion characterization of plasma parameters in shaped PBX-M discharges. Plasma Phys. Control. Fusion 39, 1373.Google Scholar
Feneberg, W. & Lackner, K. 1973 Multipole tokamak equilibria. Nucl. Fusion 13, 549.Google Scholar
Ferron, J. R., Walker, M. L., Lao, L. L., St John, H. E., Humphreys, D. A. & Leuer, J. A. 1998 Real time equilibrium reconstruction for tokamak discharge control. Nucl. Fusion 38 (7), 1055.Google Scholar
Fock, V. 1932 Skin effect in a ring. Fiz. Zh. Sovietunion 1, 215.Google Scholar
Greene, M. J. 1988 An analytic large aspect ratio, high beta equilibrium. Plasma Phys. Control. Fusion 30, 327.Google Scholar
Guazzotto, L. & Freidberg, J. P. 2007 A family of analytic equilibrium solutions for the Grad–Shafranov equation. Phys. Plasmas 14, 112508.Google Scholar
Honma, T., Kito, M., Kaji, I. & Seki, M.1979.The Vacuum Poioidai Flux Functions Satisfying the Grad-Shafranov Equation in the Fiat-Ring Cyclide Coordinate System. Bullet. 94, Hokkaido University, Facul. of Engineering.Google Scholar
Lao, L. L., John, H. S., Stambaugh, R., Kellman, A. & Pfeiffer, W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 1611.Google Scholar
Lao, L. L., St. John, H. E., Peng, Q., Ferron, J. R., Strait, E. J., Taylor, T. S. et al. 2005 MHD equilibrium reconstruction in the DIII-D Tokamak. Fusion Sci. Technol. 48, 968.Google Scholar
Lao, L., Hirschmann, S. P. & Wieland, R. 1981 Variational moment solutions to the Grad Shafranov equation. Phys. Fluids 24, 1431.Google Scholar
Lebedev, N. 1937 The functions associated with a ring of oval cross-section. Tekh. Fiz. 4, 3.Google Scholar
Li, Y. G., Lotte, P., Zwingmann, W., Gil, C. & Imbeaux, F. 2011 EFIT equilibrium reconstruction including polarimetry measurements on tore supra. Fusion Sci. Technol. 59, 397.Google Scholar
Moon, P. & Spencer, D. 1971 Field Theory Handbook. Springer.Google Scholar
Morse, P. & Feshbach, H. 1953 Methods of Theoretical Physics. MacGraw-Hill.Google Scholar
Mukhovatov, V. S. & Shafranov, V. D. 1971 Plasma equilibrium in a Tokamak. Nucl. Fusion 11, 605.Google Scholar
Neumann, C.1864.Theorie der Elektrizitats-und Warmever-teilung in einem Ringe.Google Scholar
Sartori, F., Ambrosino, G., Ariola, M., Cenedese, A., Crisanti, F., De Tommasi, G. et al. 2005 The system architecture of the new JET shape controller. Fusion Engin. Des. 74, 587.Google Scholar
Sartori, F., Crisanti, F., Albanese, R., Ambrosino, G., Toigo, V., Hay, J. et al. 2008 The JET PCU project: an international plasma control project. Fusion Engin. Des. 83, 202.Google Scholar
Shafranov, V. D. 1960 Equilibrium of a plasma toroid in a magnetic field. Sov. Phys. JETP 37, 775.Google Scholar
Shafranov, V. 1971 Determination of the parameters $\unicode[STIX]{x1D6FD}p$ and li in a Tokamak for arbitrary shape of plasma pinch cross-section. Plasma Phys. 13, 757.Google Scholar
Soloviev, L. S. 1968 The theory of hydromagnetic stability of toroidal plasma configurations. Sov. Phys. 26, 400.Google Scholar
Van Milligen, B. P. 1990 Exact relations between multipole moments of the flux and moments of the toroidal current density in Tokamaks. Nucl. Fusion 30, 157.Google Scholar
Van Milligen, B. P. & Lopez Fraguas, A. 1994 Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Commun. 81, 74.Google Scholar
Wangerin, A.1909.Theorie des Potentials und der Kugelfunktionen. Leipzig: G. J. Gfischen’sche Verlagshandlung.Google Scholar
Yue, X. N., Xiao, B. J., Luo, Z. P. & Guo, Y. 2013 Plasma physics and controlled fusion paper fast equilibrium reconstruction for Tokamak discharge control based on GPU. Plasma Phys. Control. Fusion 55, 085016.Google Scholar
Zheng, S. B., Wootton, A. J. & Solano, E. R. 1996 Analytical tokamak equilibrium for shaped plasmas. Phys. Plasmas 3, 1176.Google Scholar