Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:35:53.187Z Has data issue: false hasContentIssue false

Analytical properties and numerical solutions of the derivative nonlinear Schrödinger equation

Published online by Cambridge University Press:  13 March 2009

Silvina Ponce Dawson
Affiliation:
Instituto de Astronomíay Física del Espacio, C.C. 67 Suc. 28 (1428), Buenos Aires, Argentina
Constantino Ferro Fontán
Affiliation:
Programa de Investigaciones Teóricas y Experimentales en Física del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina

Abstract

From the analysis of the symmetries of the derivative nonlinear Schrödinger (DNLS) equation, we obtain a new constant of motion, which may be formally considered as a charge and which is related to the helicity of the physical System. From comparison of these symmetries and those of the soliton solutions, we draw conclusions about the number of constraints that must be imposed and the way a Liapunov functional must be constructed in order to study the solitons' stability. We also examine the relationship between the stability with respect to form and the symmetries that are broken by the soliton solutions. We complete the analysis with some numerical simulations: we solve the DNLS equation taking a slightly perturbed soliton as an initial condition and study its temporal evolution, finding that, as expected, they are stable with respect to form.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.CrossRefGoogle Scholar
Benjamin, T. B. 1972 Proc. R. Soc. Lond. A 328, 153.Google Scholar
Gibbons, J., Thornhill, S. G., Wardrop, M. J. & Ter Haar, D. 1977 J. Plasma Phys. 17, 153.CrossRefGoogle Scholar
Holm, D. D. & Kupershmidt, B. A. 1986 Phys. Fluids, 29, 49.CrossRefGoogle Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Phys. Rep. 123, 2.CrossRefGoogle Scholar
Kaup, D. J. & Newell, A. C. 1978 J. Math. Phys. 19, 798.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1980 Phys. Fluids, 23, 44.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1984 J. Plasma Phys. 32, 263.CrossRefGoogle Scholar
Laedke, E. W., Spatschek, K. H. & Stenflo, L. 1983 J. Math. Phys. 24, 2764.CrossRefGoogle Scholar
Laedke, E. W., Spatschek, K. H., Wilkens, M. & Zolotariuk, A. V. 1985 Phys. Rev. A 32, 1161.CrossRefGoogle Scholar
Lax, P. D. 1968 Commun. Pure Appl. Math. 21, 467.CrossRefGoogle Scholar
Mjølhus, E. 1976 J. Plasma Phys. 16, 321.CrossRefGoogle Scholar
Morrison, P. J. & Eliezer, S. 1986 Phys. Rev. A 33, 4205.CrossRefGoogle Scholar
Ponce Dawson, S. & Ferro Fontán, C. 1987 J. Comp. Phys. (in press).Google Scholar
Rajaraman, R. & Raj Lakshmi, M. 1982 Phys. Rev. B25, 1866.CrossRefGoogle Scholar
Rogister, A. 1971 Phys. Fluids, 14, 2733.CrossRefGoogle Scholar
Sakai, J. & Sonnerup, B. U. O. 1983 J. Geophys. Res. 88, 9069.CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1982 J. Plasma Phys. 27, 193.CrossRefGoogle Scholar
Terasawa, T., Hoshino, M., Sakai, J. & Hada, T. 1986 J. Geophys. Res. 91, 4171.CrossRefGoogle Scholar