Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:49:49.104Z Has data issue: false hasContentIssue false

An extended analytical solution of the Boltzmann equation for non-homogeneous fusion and astrophysical plasmas

Published online by Cambridge University Press:  13 March 2009

S. Cuperman
Affiliation:
Observatoire de Paris – Section de Meudon, DASOP, 92195 Meudon Principal Cedex, France
D. Zoler
Affiliation:
School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel

Abstract

The perturbative Chapman-Enskog procedure for solving Boltzmann's equation, holding when f1f0 (f = f0 + f1 + …), is replaced by a method that is free of such a limitation. This work represents an extension to the case of strongly anisotropic plasma systems and the spherical geometry of that of Campbell (1984, 1986). The solution obtained here is expressed in terms of prescribed ratios of mean free path for collisions, as well as electric and gravitational fields, to the temperature- and density-gradient lengths. This solution is also used to discuss the limitation of the conduction transport coefficients in electron plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhatnagar, P., Gross, E. & Krook, M. 1954 Phys. Rev. 94, 511.Google Scholar
Campbell, P. M. 1984 Phys. Rev. A 30, 365.Google Scholar
Campbell, P. M. 1986 Fusion Tech. 9, 391.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1939 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J. & Montgomery, M. D. 1973 J. Geophys. Res. 78, 6451.Google Scholar
Gross, E. & Krook, M. 1956 Phys. Rev. 102, 593.CrossRefGoogle Scholar
Levermore, C. D. & Pomraning, G. C. 1981 Astrophys. J. 248, 321.Google Scholar
Livi, S. & Marsch, E. 1986 Phys. Rev. 34, 533.Google Scholar
Malone, R. C., McCrory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.Google Scholar
Matte, J. P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases, chap. 5. Interscience.Google Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 977.Google Scholar