Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T02:49:19.315Z Has data issue: false hasContentIssue false

An asymptotic analysis of the radiation pattern of ion cyclotron resonance heating antennas

Published online by Cambridge University Press:  13 March 2009

R. Koch
Affiliation:
Laboratoire de Physique des Plasmas, Laboratorium voor Plasmafysica, Association ‘Euratom-Etat belge’, Associatie ‘Euratom-Belgische Staat’, Ecole Royale Militaire, Koninklijke Militaire School, B 1040 Brussels.
V. P. Bhatnagar
Affiliation:
Laboratoire de Physique des Plasmas, Laboratorium voor Plasmafysica, Association ‘Euratom-Etat belge’, Associatie ‘Euratom-Belgische Staat’, Ecole Royale Militaire, Koninklijke Militaire School, B 1040 Brussels.
R. R. Weynants
Affiliation:
Laboratoire de Physique des Plasmas, Laboratorium voor Plasmafysica, Association ‘Euratom-Etat belge’, Associatie ‘Euratom-Belgische Staat’, Ecole Royale Militaire, Koninklijke Militaire School, B 1040 Brussels.

Abstract

Using the stationary phase method, a simple asymptotic analysis of a two-dimensional model of the coupling of the cold-plasma magnetosonic wave excited by an ion-cyclotron resonance heating (ICRH) antenna is presented. Such an analysis allows quick evaluation of the basic characteristics of the ICRH antenna radiation pattern and shows how the power spectrum radiated by the antenna and plasma dispersion properties combine to produce the power flux distribution observed in the far-field region. The results of the present simplified analysis are found to be in reasonably good agreement with more sophisticated coupling codes. This development thus serves as a simple analytic tool for quick investigation of the most fundamental features of coupling for antenna design studies. With a view to spectrum shaping for improved heating and tokamak RF current drive, the case of a phased antenna array is also analysed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bers, A., Harten, L. P. & Ram, A. 1981 Proceedings of 4th Topical Conference on RF Plasma Heating, Austin. A161.Google Scholar
Bhatnagar, V. P., Koch, R., Geilftus, P. & Evrard, M. P. 1980 Proceedings of 2nd Joint Grenoble–Varenna International Symposium on Heating in Toroidal Plasmas, Como, vol. 1, 561.Google Scholar
Bhatnagar, V. P., Evrard, M. P., Faulconer, D. W., Geilfus, P., Koch, R., Luwel, M., Messiaen, A. M., Pearson, D. I. C., Vandenplas, P. E. & Weynants, R. R. 1982 a Proceedings of 9th International Conference on Plasma Physics and Controlled Baltimore, vol. 2, p. 103. IAEA.Google Scholar
Bhatnagar, V. P., Koch, R., Messiaen, A. M. & Weynants, R. R. 1982 b Nucl. Fusion, 22, 279.CrossRefGoogle Scholar
Bhatnagar, V. P., Koch, R., Messiaen, A. M., Weynants, R. R., Geilfus, P. & Kirkpatrick, R. 1983 Proceedings of Spring College on Radiation in Plasmas, Trieste. (To be published.)Google Scholar
Bhatnagar, V. P., Koch, R., Geilfus, P., Kirkpatrick, R. & Weynants, R. R. 1984 Nucl. Fusion, 24, 955.CrossRefGoogle Scholar
Bickerton, R. J. 1982 Physica Scripta, T2: 2, 347.CrossRefGoogle Scholar
Brambilla, M. 1983 Report IPP 4/210, Max-Planck-Institut für Plasmaphysik, Garching bei München.Google Scholar
Chiu, S. C., Chan, V. S., Hsu, J. Y., Guest, G. E., Frater, R. & Rawls, J. M. 1983 Nucl Fusion, 23, 499.CrossRefGoogle Scholar
Dingle, R. B. 1973 Asymptotic Expansions: Their Derivation and Interpretation. Academic.Google Scholar
Hwang, D. Q., Karney, C. F. F., Hosea, J. C., Harvey, J. M., Singer, C. E. & Wilson, J. R. 1983 PPPL-1990, Princeton, Plasma Physics Laboratory Report.Google Scholar
Jacquinot, J., Teilhaber, K., Lister, G. & Brambilla, M. 1982 Proceedings of 3rd Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble, vol. 1, 375.Google Scholar
Klima, R., Longinov, A. V. & Stepanov, K. N. 1975 Nucl. Fusion, 15, 1157.CrossRefGoogle Scholar
Koch, R., Bhatnagar, V. P. & Weynants, R. R. 1984 Report LPP-ERM/KMS N° 82, Ecole Royal Militaire, Brussels.Google ScholarPubMed
Messiaen, A. M., Meynart, R. & Weynants, R. R. 1981 Report LPP-ERM/KMS N° 76, Ecole Royale Militaire, Brussels.Google Scholar
Messiaen, A. M., Koch, R., Bhatnagar, V. P., Evard, M. P., Luwel, M., Vandenplas, P. E. & Weynants, R. R. 1982 Proceedings of 3rd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble, vol. 1, p. 243.Google Scholar
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.Google Scholar
Puri, S. 1982 Proceedings of 3rd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasma, Grenoble, Vol. 1, p. 391.Google Scholar
Reynolds, P. 1981 International Tokamak Reactor. Phase 1. Conceptual design. Commission of the European Communities, Brussels.Google Scholar
Teilhaber, K. & Jacquinot, J. 1984 Nucl. Fusion, 24, 541.CrossRefGoogle Scholar
Weynants, R. R. 1982 Report LPP-ERM/KMS N° 80, Brussels. (Also in INTOR, 1982, Phase IIA. Critical Issues, Commission of the European Communities, Brussels.)Google Scholar