Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:01:29.562Z Has data issue: false hasContentIssue false

Amplification of neutrino oscillations by a density ripple in dense plasmas

Published online by Cambridge University Press:  21 January 2011

P. K. SHUKLA*
Affiliation:
RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Institute for Theoretical Physics V, Faculty of Physics & Astronomy, Ruhr University Bochum, 44780 Bochum, Germany; Scottish Universities Physics Alliance (SUPA), Department of Physics, University of Strathclyde, Glasgow, Scotland; School of Physics, University of KwaZulu-Natal, Durban 4000 Durban, South Africa; and Departamento de Física and Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, [email protected], [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a pre-existing electron density ripple in a dense plasma can excite electron neutrino oscillations. For our purposes, we use the dispersion relation for neutrino oscillations and derive the Mathieu equation for the propagation of neutrino oscillations in the presence of a spatially oscillating electron density ripple. The Mathieu equation predicts instability of neutrino oscillations. The criterion under which instability occurs is presented. Analytical expressions for the neutrino oscillation frequency and the growth rate are obtained. The possible relevance of our investigation to non-thermal neutrino oscillations in dense plasma environments (e.g. the supernovae, the core of white dwarf stars etc.) is briefly mentioned.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2011

References

[1]Bethe, H. A. 1986 Phys. Rev. Lett. 56, 1305.CrossRefGoogle Scholar
[2]Bethe, H. A. 1990 Rev. Mod. Phys. 62, 801.CrossRefGoogle Scholar
[3]Kuo, T. K. and Pantaleone, J. 1989 Rev. Mod. Phys. 62, 937.CrossRefGoogle Scholar
[4]Bingham, R., Dawson, J. M., Su, J. J. and Bethe, H. A. 1994 Phys. Lett. A 193, 279.CrossRefGoogle Scholar
[5]Bingham, R., Bethe, H. A., Dawson, J. M., Shukla, P. K. and Su, J. J. 1996 Phys. Lett. A 220, 107.CrossRefGoogle Scholar
[6]Silva, L. O., Bingham, R., Dawson, J. M. et al. , 1999 Phys. Rev. Lett. 83, 2703.CrossRefGoogle Scholar
[7]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
[8]McLachlan, N. W. 1964 Theory and Application of Mathieu Equations, chapter IV. New York: Dover.Google Scholar
[9]Lin, A. T., Kaw, P. K. and Dawson, J. M. 1978 Phys. Rev. A 8, 2618.CrossRefGoogle Scholar