Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:53:45.436Z Has data issue: false hasContentIssue false

Alfvén-wave heating in resistive MHD

Published online by Cambridge University Press:  13 March 2009

Stefaan Poedts
Affiliation:
Astronomisch Instituut, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3030 Heverlee, Belgium
Wolfgang Kerner
Affiliation:
Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstrasse 2, D-8046 Garching bei München, Federal Republic of Germany
Marcel Goossens
Affiliation:
Astronomisch Instituut, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3030 Heverlee, Belgium

Abstract

Resonant absorption of Alfvén waves in tokamak plasmas is studied numerically using the linearized equations of resistive magnetohydrodynamics. A numerical code based on a finite-element discretization is used for determining the stationary state of a cylindrical plasma column that is excited by an external periodic driver. The energy dissipation rate in the stationary state is calculated and the dependence of the plasma heating on electrical resistivity, the equilibrium profiles, and the wavenumbers and frequency of the external driver is investigated. Resonant absorption is extremely efficient when the plasma is excited with a frequency near that of a so-called ‘collective mode’. The heating of a plasma by driving it at the frequencies of discrete Alfvén waves is also investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appert, K., Balet, B., Gruber, R., Troyon, F. & Vaclavík, J. 1981 Proceedings of 8th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Brussels, vol. 2, p. 43. IAEA, Vienna.Google Scholar
Appert, K., Balet, B., Gruber, R., Troyon, F., Tsunematsu, T. & Vaclavik, J. 1980 LRP 170/80.Google Scholar
Appert, K., Berger, D., Gruber, R. & Rappaz, J. 1975 J. Comp. Phys. 18, 284.CrossRefGoogle Scholar
Appert, K., Gruber, R., Troyon, F. & Vaclavik, J. 1982 Plasma Phys. 24, 1147.CrossRefGoogle Scholar
Appert, K., Vaclavik, J. & Villard, L. 1984 LRP 238/84.Google Scholar
Balet, B., Appert, K. & Vaclavik, J. 1982 Plasma Phys. 24, 1005.CrossRefGoogle Scholar
Besson, G., De Chambrier, A., Collins, G. A., Joye, B., Lietti, A., Lister, J. B., Moret, J. M., Nowak, S., Simm, C. & Weisen, H. 1986 Plasma Phys. Contr. Fusion, 28, 1291.CrossRefGoogle Scholar
Chance, M. S., Greene, J. M., Grimm, R. C. & Johnson, J. L. 1977 Nucl. Fusion, 17, 65.CrossRefGoogle Scholar
Chen, L. & Hasegawa, A. 1974 Phys. Fluids, 17, 1399.CrossRefGoogle Scholar
Collins, G. A., Howling, A. A., Lister, J. B. & Marmillod, P. 1987 Plasma Phys. Contr. Fusion, 29, 323.CrossRefGoogle Scholar
Donnelly, I. J. & Clancy, B. E. 1983 Aust. J. Phys. 36, 305.CrossRefGoogle Scholar
Donnelly, I. J., Clancy, B. E. & Cramer, N. F. 1986 J. Plasma Phys. 35, 75.CrossRefGoogle Scholar
Donnelly, I. J. & Cramer, N. F. 1984 Plasma Phys. Contr. Fusion, 26, 769.CrossRefGoogle Scholar
Goedbloed, J. P. 1975 Phys. Fluids, 18, 1258.CrossRefGoogle Scholar
Goedbloed, J. P. 1983 Rijnhuizen Report 83145.Google Scholar
Goedbloed, J. P. 1984 Physica, 12D, 107.Google Scholar
Grossmann, W. & Tataronis, J. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Fluids, 19, 1924.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1975 Phys. Rev. Lett. 35, 370.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1976 Phys. Fluids, 19, 1924.CrossRefGoogle Scholar
Kappraff, J. M. & Tataronis, J. A. 1977 J. Plasma Phys. 18, 209.CrossRefGoogle Scholar
Kerner, W. 1986 Large Scale Eigenvalue Problems (ed. Cullum, J. & Willough, R. A.). Elsevier, p. 241.Google Scholar
Kerner, W., Lerbinger, K., Gruber, R. & Tsunematsu, T. 1985 a Comp. Phys. Commun. 36, 225.CrossRefGoogle Scholar
Kerner, W., Lerbinger, K. & Riedel, K. 1986 Phys. Fluids, 29, 2975.CrossRefGoogle Scholar
Kerner, W., Lerbinger, K. & Steuerwald, J. 1985 b Comp. Phys. Commun. 38, 27.CrossRefGoogle Scholar
Rappaz, J. 1975 Num. Math. 28, 15.CrossRefGoogle Scholar
Roberts, P. H. 1967 An Introduction to Magnetohydrodynamics. Longmans.Google Scholar
Ross, W., Chen, G. L. & Mahajan, S. M. 1982 Phys. Fluids, 25, 652.CrossRefGoogle Scholar
Sedlacek, Z. 1971 J. Plasma Phys. 5, 239.CrossRefGoogle Scholar
Strang, G. & Fix, G. J. 1973 An Analysis of the Finite Element Method. Prentice-Hall.Google Scholar
Tataronis, J. A. 1975 J. Plasma Phys. 13, 87.CrossRefGoogle Scholar
Tataronis, J. & Grossmann, W. 1973 Z. Phys. 261, 203.CrossRefGoogle Scholar
Tataronis, J. & Grossmann, W. 1976 Nucl. Fusion, 16, 667.CrossRefGoogle Scholar