Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T10:34:54.564Z Has data issue: false hasContentIssue false

Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas

Published online by Cambridge University Press:  06 March 2017

C. Krafft*
Affiliation:
LPP, CNRS, Ecole Polytechnique, UPMC Univ. Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, 91128 Palaiseau, France
A. Volokitin
Affiliation:
Space Research Institute, 84/32 Profsoyuznaya Str., 117997 Moscow, Russia IZMIRAN, Troitsk, 142190Moscow, Russia
*
Email address for correspondence: [email protected]

Abstract

The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bougeret, J.-L., Goetz, K., GoldsteinKaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., Davy, S. et al. 2008 S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487529.Google Scholar
Cary, J. R. & Doxas, I. 1993 An explicit symplectic integration scheme for plasma simulations. J. Comput. Phys. 107 (1), 98104.Google Scholar
Celnikier, L. M., Harvey, C. C., Jegou, R., Moricet, P. & Kemp, M. 1983 A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293298.Google Scholar
Elskens, Y. & Escande, D. 2003 Microscopic Dynamics of Plasmas and Chaos. Institute of Physics Publishing.Google Scholar
Ergun, R. E., Larson, D., Lin, R. P., McFadden, J. P., Carlson, C. W., Anderson, K. A., Muschietti, L., McCarthy, M., Parks, G. K., Reme, H. et al. 1998 Wind spacecraft observations of solar impulsive electron events associated with solar type III radio bursts. Astrophys. J. 503 (1), 435445.CrossRefGoogle Scholar
Ergun, R. E., Malaspina, D. M., Cairns, I. H., Goldman, M. V., Newman, D. L., Robinson, P. A., Eriksson, S., Bougeret, J. L., Briand, C., Bale, S. D. et al. 2008 Eigenmode structure in solar-wind Langmuir waves. Phys. Rev. Lett. 101, 051101.Google Scholar
Gurnett, D. A. & Anderson, R. R. 1976 Electron plasma oscillations associated with type III radio bursts. Science 194 (4270), 11591162.Google Scholar
Hess, S. L. G., Malaspina, D. M. & Ergun, R. E. 2011 Size and amplitude of Langmuir waves in the solar wind. J. Geophys. Res. 116, A07104.Google Scholar
Kellogg, P. J., Goetz, K., Monson, S. J., Bale, S. D., Reiner, M. J. et al. 2009 Plasma wave measurements with Stereo s/waves: calibration, potential model, and preliminary results. J. Geophys. Res. 114 (A2), A02107.Google Scholar
Kontar, E. P. & Pecseli, H. L. 2002 Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E 65 (6), 066408.Google Scholar
Krafft, C. & Volokitin, A. 2004 Resonant three-wave interaction in the presence of suprathermal electron fluxes. Ann. Geophys. 22, 19.Google Scholar
Krafft, C., Volokitin, A. & Zaslavsky, A. 2005 Saturation of the fan instability: nonlinear merging of resonances. Phys. Plasmas 12, 112309.Google Scholar
Krafft, C. & Volokitin, A. 2006 Stabilization of the fan instability: electron flux relaxation. Phys. Plasmas 13, 122301.Google Scholar
Krafft, C. & Volokitin, A. 2010 Nonlinear fan instability of electromagnetic waves. Phys. Plasmas 17, 102303.CrossRefGoogle Scholar
Krafft, C. & Volokitin, A. 2013 Nonturbulent stabilization of ion fluxes by the fan instability. Phys. Lett. A 377, 11891198.Google Scholar
Krafft, C., Volokitin, A. S. & Krasnoselskikh, V. V. 2013 Interaction of energetic particles with waves in strongly inhomogeneous solar wind plasmas. Astrophys. J. 778, 111122.Google Scholar
Krafft, C., Volokitin, A. S., Krasnoselskikh, V. V. & Dudok de Wit, T. 2014 Waveforms of Langmuir turbulence in inhomogeneous solar wind plasmas. J. Geophys. Res. 119, 93699382.Google Scholar
Krafft, C., Volokitin, A. S. & Krasnoselskikh, V. V. 2015 Langmuir wave decay in inhomogeneous solar wind plasmas: simulation results. Astrophys. J. 809, 176193.Google Scholar
Krafft, C. & Volokitin, A. 2016a Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations. In AIP Conference Proceedings (ed. Zank, G. P.), vol. 1720, p. 040008.Google Scholar
Krafft, C. & Volokitin, A. S. 2016b Electron acceleration by Langmuir waves produced by a decay cascade. Astrophys. J. 821 (2), 99108.Google Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A. & Scarf, F. L. 1981 Energetic electrons and plasma waves associated with a solar type III radio burst. Astrophys. J. 251, 364373.Google Scholar
Mynick, H. E. & Kaufman, A. N. 1978 Soluble theory of nonlinear beam-plasma interaction. Phys. Fluids 21 (4), 653663.Google Scholar
O’Neil, T. M., Winfrey, J. H. & Malmberg, J. H. 1971 Nonlinear interaction of a small cold beam and a plasma. Phys. Fluids 14, 12041212.Google Scholar
Onishchenko, I. N., Linetskii, A. R., Matsiborko, N. G., Shapiro, V. D. & Shevchenko, V. I. 1970 Contribution to the nonlinear theory of excitation of a monochromatic plasma wave by an electron beam. J. Expl Theor. Phys Lett. 12, 281285.Google Scholar
Ryutov, D. D. 1970 Quasilinear relaxation of an electron beam in an inhomogeneous plasma. Sov. Phys. JETP 30, 131137.Google Scholar
Tennyson, J. L., Meiss, J. D. & Morrison, P. J. 1994 Self-consistent chaos in the beam-plasma instability. Phys. D 71 (1–2), 117.Google Scholar
Thurgood, J. O. & Tsiklauri, D. 2016 Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas. J. Plasma Phys. 82, 905820604.Google Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. 1961 Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82100.Google Scholar
Volokitin, A. & Krafft, C. 2004 Interaction of suprathermal electron fluxes with lower hybrid waves. Phys. Plasmas 11 (6), 31653176.Google Scholar
Volokitin, A. & Krafft, C. 2012 Velocity diffusion in plasma waves excited by electron beams: a numerical experiment. Plasma Phys. Control. Fusion 54, 085002.Google Scholar
Volokitin, A. & Krafft, C. 2016a Velocity diffusion of energetic electrons in the solar wind. In AIP Conference Proceedings (ed. Zank, G. P.), vol. 1720, p. 070007.Google Scholar
Volokitin, A. S. & Krafft, C. 2016b Diffusion of energetic electrons in turbulent plasmas of the solar wind. Astrophys. J. 833, 166178.Google Scholar
Volokitin, A., Krafft, C. & Matthieussent, G. 1997 Whistler waves emission by a modulated electron beam: nonlinear theory. Phys. Plasmas 4 (11), 41264135.Google Scholar
Volokitin, A., Krasnoselskikh, V., Krafft, C. & Kuznetsov, E. 2013 Modelling of the beam-plasma interaction in a strongly inhomogeneous plasma. In AIP Conference Proceedings (ed. Zank, G. P.), vol. 1539 (1), pp. 78–81.Google Scholar
Zakharov, V. E. 1972 Collapse of Langmuir waves. Sov. Phys. JETP 35 (5), 908914.Google Scholar
Zaslavsky, A., Krafft, C., Gorbunov, L. & Volokitin, A. 2008 Wave-particle interaction at double resonance. Phys. Rev. E 77, 056407.Google ScholarPubMed
Zaslavsky, A., Krafft, C. & Volokitin, A. 2006 Stochastic processes of particle trapping and detrapping by a wave in a magnetized plasma. Phys. Rev. E 73, 016406.Google Scholar
Zaslavsky, A., Krafft, C. & Volokitin, A. 2007 Loss-cone instability: wave saturation by particle trapping. Phys. Plasmas 14, 122302.Google Scholar