Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:30:37.426Z Has data issue: false hasContentIssue false

Wave propagation in a moving plasma. Part 1. Wave propagation normal to the magnetic field and motion of the plasma along the magnetic field

Published online by Cambridge University Press:  13 March 2009

D. N. Srivastava
Affiliation:
Reactor Control Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085

Abstract

The dispersion relation for a collisionless moving electron plasma, when the direction of motion is along the magnetic field, and that of the wave propagation normal to the magnetic field, is analysed. It is shown that in small magnetic fields the ordinary wave develops a new band of backward waves below the plasma frequency. When the frequency of the wave is higher than the plasma frequency, the effect of the motion of the plasma is identical to a deviation of the direction of propagation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, V. A. 1948 Aust. J. Sci. Res. A1, 351.Google Scholar
Brandstatter, J. J. 1963 An Introduction to Waves, Rays and Radiation in Plasma MediaM. McGraw-Hill.Google Scholar
Buddens, K. G. 1961 Radio Waves in the Ionosphere. Cambridge University Press.Google Scholar
Chawla, B. R., Rao, S. S. & Unz, H. 1966 J. Appl. Phys. 37, 3563.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 a Radio Sci. 1, 1055.Google Scholar
Chawla, B. R. & Unz, H. 1966 b IEEE Trans. Ant. Prop. AP-14, 407.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 c Proc. IEEE, 54, 1103.Google Scholar
Chawla, B. R. & Unz, H. 1966 d Proc. IEEE, 54, 332.Google Scholar
Chawla, B. R. & Unz, H. 1967 a Electronics Lett. 3, 244.Google Scholar
Chawla, B. R. & Unz, H. 1967 b IEEE Trans. Ant. Prop. AP-15, 324.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1967 c Proc. IEEE, 55, 1741.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1971 Electromagnetic Waves in Moving Magnetoplasmas. University Press of Kansas.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
Collin, R. E. 1960 Field Theory of Guided Waves. McGraw-Hill.Google Scholar
Holt, E. H. & Haskell, R. E. 1965 Foundations of Plasma Dynamics. Macmillan.Google Scholar
Kalluri, D. 1970 Proc. IEEE, 58, 278.CrossRefGoogle Scholar
Kunkel, W. B. 1966 Plasma Physics in Theory and Application. McGraw-Hill.Google Scholar
Ratcliffe, J. A. 1959 The Magneto-ionic Theory and its Applications to the Ionosphere. Cambridge University Press.Google Scholar
Shercliff, J. A. 1965 A Text Book of Magnetohydrodynamics. Porgamon.Google Scholar
Sidhu, D. P. & Unz, H. 1968 Trans. Kansas Acad. Sci. 70, 432.Google Scholar
Srivastava, D. N. 1972 J. Plasma Phys. 8, 127.CrossRefGoogle Scholar
Steele, M. C. & Vural, B. 1969 Wave Interactions in Solid State Plasmas. McGraw-Hill.Google Scholar
Tai, C. T. 1964 Proc. IEEE, 52, 685.CrossRefGoogle Scholar
Tai, C. T. 1965 a Radio Sci. J. Res. NBS, 69 D, 401.Google Scholar
Tai, C. T. 1965 b IEEE Trans. Ant. Prop. AP-13, 322.CrossRefGoogle Scholar
Tai, C. T. 1966 IEEE International Convention Record, Part 7, 148.Google Scholar
Unz, H. 1962 IRE Trans. Ant. Prop. AP-10, 459.CrossRefGoogle Scholar
Unz, H. 1963 a J. Atmos. Terrst. Phys. 25, 281.CrossRefGoogle Scholar
Unz, H. 1963 b IEEE Trans. Ant. Prop. AP.11, 573.Google Scholar
Unz, H. 1966a Phys. Rev. 146, 92.CrossRefGoogle Scholar
Unz, H. 1966b Radio Sci. 1, 325.CrossRefGoogle Scholar
Unz, H. 1967 IEEE Trans. Microwave Theory and Techniques, 15, 432.CrossRefGoogle Scholar
Unz, H. 1968 Radio Sci. 3, 295.CrossRefGoogle Scholar