Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T15:03:54.001Z Has data issue: false hasContentIssue false

Wave kinetic description of quantum pair plasmas

Published online by Cambridge University Press:  01 February 2008

J. T. MENDONÇA
Affiliation:
CFP, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ([email protected]) CFIF, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
J. E. RIBEIRO
Affiliation:
CFIF, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany Department of Physics, Umeå University, SE-90187 Umeå, Sweden SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK

Abstract

The dispersion relation for a quantum pair plasma is derived, by using a wave kinetic description. A general form of the kinetic dispersion relation for electrostatic waves in a two-component quantum plasma is established. The particular case of an electron–positron pair plasma is considered in detail. Exact expressions for Landau damping are derived, and the quasi-classical limit is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Pines, D. 1961 J. Nucl. Energy, Part C: Plasma Phys. 2, 5.CrossRefGoogle Scholar
[2]Haas, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 62, 2763.CrossRefGoogle Scholar
[3]Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
[4]Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
[5]Anderson, D., Hall, B., Lisak, M. and Marklund, M. 2002 Phys. Rev. E 65, 046417.Google Scholar
[6]Shukla, P. K. and Stenflo, L. 2006 Phys. Plasmas 13, 044505.CrossRefGoogle Scholar
[7]Shukla, P. K. 2006 Phys. Lett. A 352, 242.CrossRefGoogle Scholar
[8]Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
[9]Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
[10]Kremp, D., Bornath, Th., Bonitz, M. and Schlanges, M. 1999 Phys. Rev. E 60, 4725.Google Scholar
[11]Eliezer, S. et al. 2005 Phys. Plasmas 12, 052115.CrossRefGoogle Scholar
[12]Melrose, D. B. and Parle, A. J. 1983 Aust. J. Phys. 36, 755 (1983); 36, 799 (1983).CrossRefGoogle Scholar
[13]Opher, M. et al. 2001 Phys. Plasmas 8, 2454.CrossRefGoogle Scholar
[14]Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
[15]Markowich, P. A. et al. 1990 Semiconductor Equations. New York: Springer.CrossRefGoogle Scholar
[16]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol: Institute of Physics.CrossRefGoogle Scholar
[17]Hillary, M. et al. 1984 Phys. Rep. 106, 121.CrossRefGoogle Scholar
[18]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 76, 591.CrossRefGoogle Scholar