Published online by Cambridge University Press: 01 February 1999
Multiple-scales perturbation methods are used to study wave interactions in magnetohydrodynamics (MHD), in one Cartesian space dimension, with application to cosmic-ray-modified shocks. In particular, the problem of the propagation and interaction of short wavelength MHD waves, in a large-scale background flow, modified by cosmic rays is studied. The wave interaction equations consist of seven coupled evolution equations for the backward and forward Alfvén waves, the backward and forward fast and slow magnetoacoustic waves and the entropy wave. In the linear wave regime, the waves are coupled by wave mixing due to gradients in the background flow, cosmic-ray squeezing instability effects, and damping due to the diffusing cosmic rays. In the most general case, the evolution equations also contain nonlinear wave interaction terms due to Burgers self wave steepening for the magnetoacoustic modes, resonant three wave interactions, and mean wave field interaction terms. The form of the wave interaction equations in the ideal MHD case is also discussed. Numerical simulations of the fully nonlinear cosmic ray MHD model equations are compared with spectral code solutions of the linear wave interaction equations for the case of perpendicular, cosmic-ray-modified shocks. The solutions are used to illustrate how the different wave modes can be generated by wave mixing, and the modification of the cosmic ray squeezing instability due to wave interactions. It is shown that the Alfvén waves are coupled to the magnetoacoustic and entropy waves due to linear wave mixing, only in background flows with non-zero field aligned electric current and/or vorticity (i.e. if B·∇×B≠0 and/or B·∇×u≠0, where B and u are the magnetic field induction and fluid velocity respectively).