Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T14:44:53.408Z Has data issue: false hasContentIssue false

Wakefield effects on three-dimensional dust-lattice modes

Published online by Cambridge University Press:  13 December 2013

B. Farokhi*
Affiliation:
Department of Physics, Arak University, Arak, Iran ([email protected])
A. Hameditabar
Affiliation:
Department of Physics, Arak University, Arak, Iran ([email protected])
*
Email address for correspondence: [email protected]

Abstract

Dispersion relations of dust-lattice waves in three-dimensional body-centered cubic (bcc) and face-centered cubic (fcc) dusty plasma crystals are derived taking into account particle–wake interactions. Results show that resonance coupling between the longitudinal and out-of-plane transverse wave modes set in if the vertical confinement is below a certain critical value. The imaginary part of the wave frequency shows that the hybrid mode cannot propagate in the crystal.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonitz, M., Henning, C. and Block, D. 2010 Rep. Prog. Phys. 73, 066501.Google Scholar
Chu, J. H. and Lin, I. 1994 Phys. Rev. Lett. 72, 4009. doi:10.1103/PhysRevLett.72.4009.Google Scholar
Farokhi, B. and Hameditabar, A. 2012 Chinese Phys. Lett. 29, 025204.CrossRefGoogle Scholar
Hamaguchi, S., Farouki, R. T. and Dubin, D. H. E. 1997a Phys. Rev. E 56, 4671.Google Scholar
Hamaguchi, S., Farouki, R. T. and Dubin, D. H. E. 1997b Phys. Rev. E 56, 46.Google Scholar
Hayashi, Y. 1999 Phys. Rev. Lett. 83, 4764. doi:10.1103/PhysRevLett.83.4764.Google Scholar
Ignatov, A. M. 2003 Plasma Phys. Rep. 29, 296.Google Scholar
Ikezi, H. 1986 Phys. Fluids. 29, 1764.Google Scholar
Ivlev, A. V. and Morfill, G. 2001 Phys. Rev. E 63, 026412.Google Scholar
Klumov, B. A. and Morfill, G. E. 2008 J. Exp. Theor. Phys. 107, 908.Google Scholar
Klumov, B. A. and Morfill, G. E. 2009 J. Exp. Theor. Phys. 90, 489.Google Scholar
Morfill, G. E.et.al. 1997 Advances in Dusty Plasma Physics. Singapore: World Scientific, 99 pp.Google Scholar
Pieper, J. B., Goree, J. and Quinn, R. A. 1996 J. Vac. Sci. Technol. A 14, 519. doi:10.1116/1.580118.Google Scholar
Schweigert, V. A., Schweigert, I. V., Melzer, A., Homann, A. and Piel, A. 1996 Phys. Rev. E 54, 4155.CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Mohlmann, D. 1994 Phys. Rev. Lett. 73, 652.Google Scholar
Vaulina, O., Khrapak, S. and Morfill, G. E. 2002 Phys. Rev. E 66, 016404.Google Scholar
Wang, X. Y., Duan, W. S., Lin, M. M. and Wan, G. X. 2006 Chaos Solitons Fractals 30, 909. doi:10.1016/j.chaos.2005.08.193.Google Scholar
Yang, X. F. and Wang, X. G. 2012 Phys. Plasmas 19, 073704.Google Scholar
Yang, X. F., Wang, X. G. and Liu, Y. 2009 Chinese Phys. B 18, 4938.Google Scholar
Zhdanov, S. K., Ivlev, A. V. and Morfill, G. E. 2009 Phys. Plasmas 16, 083706.Google Scholar
Zuzic, M., Ivlev, A. V. and Goree, J. 2000 Phys. Rev. Lett. 85, 4064.CrossRefGoogle Scholar