Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T13:42:44.778Z Has data issue: false hasContentIssue false

Vortex dynamics in perfect fluids

Published online by Cambridge University Press:  13 March 2009

Yves Pomeau
Affiliation:
Laboratoire de Physique Statistique, associé an CNRS, École Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France, and Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Abstract

I review the current status of a problem, relevant to both plasma physics and ordinary fluid mechanics, namely the long-time behaviour of solutions of the perfect fluid equations. In two space dimensions, thanks in particular to the work of D. Montgomery, the situation is now quite clear, since one expects the formation at long times of large vortices in a background of potential flow. In three dimensions, the situation is blurred, although its understanding is a central issue for fully developped turbulence. I present some new estimates for a possible scenario of self-similar blow up of solutions of 3D Euler. That turns out to be a rather subtle question, if one tries to stay consistent with the conservation of circulation and of energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Carnevale, G. F., McWilliams, J., Pomeau, Y., Weiss, J. B. and Young, W. R. 1991 Phys. Rev. Lett. 66, 2735.CrossRefGoogle Scholar
Carnevale, G. F., McWilliams, J., Pomeau, Y., Weiss, J. B. and Young, W. R. 1992 Phys. Fluids A4, 1314.CrossRefGoogle Scholar
Douady, S., Couder, Y. and Brachet, M. E. 1991 Phys. Rev. Lett. 67, 983.CrossRefGoogle Scholar
Dyachenko, S., Newell, A. C., Pushkarev, A. and Zakharov, V. E. 1992 Physica D57, 96.Google Scholar
Fraiman, G. 1985 Soviet Phys. JETP, 61, 228.Google Scholar
Herring, J. R. and McWilliams, J. 1985 J. Fluid Mech. 153, 229.CrossRefGoogle Scholar
Landman, M., Papanicolaou, G., Sulem, C. and Sulem, P. L. 1988 Phys. Rev. A38, 3837.CrossRefGoogle Scholar
McWilliams, J. 1990 Phys. Fluids A2, 547.CrossRefGoogle Scholar
Matthaeus, W. H. and Montgomery, D. 1984 Statistical Physics and Chaos in Fusion Plasmas (ed. Horton, C. W. and Reichl, L. E.), p. 285. Wiley, New York.Google Scholar
Miller, J. 1990 Phys. Rev. Lett. 65, 2137.CrossRefGoogle Scholar
Montgomery, D., Turner, L. and Vahalo, G. 1978 Phys. Fluids 21, 757.CrossRefGoogle Scholar
Onsager, L. 1949 Suppl. Nuovo Cim. 6, 279.CrossRefGoogle Scholar
Pomeau, Y. 1994 a Fluid Physics, Lecture Notes of Summer Schools (ed. Velarde, M. G. and Christov, C. I.). World Scientific, Singapore.Google Scholar
Pomeau, Y. 1994 b C. R. Acad. Sci. Paris, Sér. II 318, 865.Google Scholar
Pomeau, Y. 1995 C. R. Acad Sci. Paris, Sér. II 321, 407.Google Scholar
Pumir, A., Siggia, E. D. and Dombres, T. 1992 Phys. Rev. A45 R5351.CrossRefGoogle Scholar
Robert, R. 1989 C. R. Acad. Sci. Paris, Sér. I 309, 757.Google Scholar
Robert, R., and Sommeria, J. 1992 J. Fluid Mech. 229, 291.CrossRefGoogle Scholar
Siggia, E. D. 1981 J. Fluid Mech. 107, 375.CrossRefGoogle Scholar
Ting, A. C., Mattheus, W. H. and Montgomery, D. 1986 Phys. Fluids 29, 3261.CrossRefGoogle Scholar
Zeitlin, V. 1992 J. Phys. A: Math. Gen. 25, L171.CrossRefGoogle Scholar