Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T13:10:54.775Z Has data issue: false hasContentIssue false

Variational theory of the cyclotron-emission source distribution from a mode-conversion layer

Published online by Cambridge University Press:  13 March 2009

V. F. Shvets
Affiliation:
Physics Department, Auburn University, Alabama 36849, U.S.A.
D. G. Swanson
Affiliation:
Physics Department, Auburn University, Alabama 36849, U.S.A.

Extract

This paper presents the theory of an inhomogeneous source of cyclotron emission from a three-branch mode-conversion layer in a non-uniformly magnetized plasma. The physical formulation of the problem is based on the generalized Kirchhoff's law that relates, branch by branch, the emission to the absorption. General integral expressions for both absorbed and emitted energy fractions along each wave branch are obtained. A discrete multi-point model of absorbers and emitters is analysed. A variational principle for the integral of the emitted power is formulated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T. M. & Manheimer, W. M. 1978 Phys. Fluids 21, 2295.CrossRefGoogle Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bornatici, M., Cano, R., De, Barbieri O. & Engleman, F. 1983 Nucl. Fusion 23, 1153.CrossRefGoogle Scholar
Cho, Suwon, & Swanson, D. G. 1990 a Phys. Fluids B 2, 235.CrossRefGoogle Scholar
Cho, Suwon, & Swanson, D. G. 1990 b Phys. Fluids B 2, 2704.CrossRefGoogle Scholar
Erokhin, N. S. & Moiseev, S. S. 1979 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7, p. 181. Consultants Bureau.Google Scholar
Faulconer, D. W. 1980 Phys. Lett. 75A, 355.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Granata, G. & Fidone, I. 1991 J. Plasma Phys. 45, 361.CrossRefGoogle Scholar
Korn, G. A. & Korn, T. M. 1968 Mathematical Handbook for Scientists and Engineers. McGraw-Hill.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill (reprinted 1986 San Francisco Press).CrossRefGoogle Scholar
Melrose, D. B. & McPhedran, R. C. 1991 Electromagnetic Processes in Dispersive Media. Cambridge University Press.CrossRefGoogle Scholar
Ngan, Y. C. & Swanson, D. G. 1977 Phys. Fluids 20, 1920.CrossRefGoogle Scholar
Shkarofsky, I. 1966 Phys. Fluids 9, 561.CrossRefGoogle Scholar
Stix, T. H. & Swanson, D. G. 1983 Handbook of Plasma Physics (ed. Galeev, A. A. & Sudan, R. N.), vol. 1, p. 335. North-Holland.Google Scholar
Swanson, D. G. 1978 Phys. Fluids 21, 926.CrossRefGoogle Scholar
Swanson, D. G. 1980 Nucl. Fusion 20, 949.CrossRefGoogle Scholar
Swanson, D. G. 1985 Phys. Fluids 28, 2645.CrossRefGoogle Scholar
Swanson, D. G. 1989 Plasma Waves. Academic.CrossRefGoogle Scholar
Swanson, D. G. & Cho, Suwon 1989 Phys. Rev. Lett. 63, 1386.CrossRefGoogle Scholar
Swanson, D. G. & Shvets, V. F. 1992 Phys. Rev. Lett. 68, 3036.CrossRefGoogle Scholar
Swanson, D. G. & Shvets, V. F. 1993 a J. Math. Phys. 34, 69.CrossRefGoogle Scholar
Swanson, D. G. & Shvets, V. F. 1993 b Nucl. Fusion (submitted).Google Scholar
Talmadge, J. N., Zushi, H., Sudo, S., Mutoh, T., Sato, M., Obiki, T., Motojima, O, Iiyoshi, A. & Uo, K. 1984 Phys. Rev. Lett. 52, 33.CrossRefGoogle Scholar
Trubnikov, B. A. 1979 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7, p. 345. Consultants Bureau.Google Scholar